Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.
Quantitative Bio-Element Imaging Center, Northwestern University, Evanston, Illinois 60208, United States.
J Am Chem Soc. 2021 Feb 3;143(4):1984-1992. doi: 10.1021/jacs.0c11769. Epub 2020 Dec 30.
We report the molecular recognition of the Au(CN) anion, a crucial intermediate in today's gold mining industry, by α-cyclodextrin. Three X-ray single-crystal superstructures-KAu(CN)⊂α-cyclodextrin, KAu(CN)⊂(α-cyclodextrin), and KAg(CN)⊂(α-cyclodextrin)-demonstrate that the binding cavity of α-cyclodextrin is a good fit for metal-coordination complexes, such as Au(CN) and Ag(CN) with linear geometries, while the K ions fulfill the role of linking α-cyclodextrin tori together as a result of [K···O] ion-dipole interactions. A 1:1 binding stoichiometry between Au(CN) and α-cyclodextrin in aqueous solution, revealed by H NMR titrations, has produced binding constants in the order of 10 M. Isothermal calorimetry titrations indicate that this molecular recognition is driven by a favorable enthalpy change overcoming a small entropic penalty. The adduct formation of KAu(CN)⊂α-cyclodextrin in aqueous solution is sustained by multiple [C-H···π] and [C-H···anion] interactions in addition to hydrophobic effects. The molecular recognition has also been investigated by DFT calculations, which suggest that the 2:1 binding stoichiometry between α-cyclodextrin and Au(CN) is favored in the presence of ethanol. We have demonstrated that this molecular recognition process between α-cyclodextrin and KAu(CN) can be applied to the stripping of gold from the surface of activated carbon at room temperature. Moreover, this stripping process is selective for Au(CN) in the presence of Ag(CN), which has a lower binding affinity toward α-cyclodextrin. This molecular recognition process could, in principle, be integrated into commercial gold-mining protocols and lead to significantly reduced costs, energy consumption, and environmental impact.
我们报告了 α-环糊精对 Au(CN)阴离子的分子识别,Au(CN)阴离子是当今采金业中的关键中间体。三个 X 射线单晶超结构 - KAu(CN)⊂α-环糊精、KAu(CN)⊂(α-环糊精)和 KAg(CN)⊂(α-环糊精) - 表明 α-环糊精的结合腔非常适合具有线性几何形状的金属配位化合物,如 Au(CN)和 Ag(CN),而 K 离子通过[K···O]离子偶极相互作用起到连接 α-环糊精环的作用。通过 H NMR 滴定揭示了在水溶液中 Au(CN)与 α-环糊精之间 1:1 的结合化学计量比,产生了 10 M 数量级的结合常数。等温量热滴定表明,这种分子识别是由有利的焓变驱动的,克服了较小的熵罚。KAu(CN)⊂α-环糊精在水溶液中的加合物形成除了疏水作用之外,还包括多个[C-H···π]和[C-H···阴离子]相互作用。DFT 计算还研究了分子识别,结果表明在存在乙醇的情况下,α-环糊精与 Au(CN)之间的 2:1 结合化学计量比更有利。我们已经证明,α-环糊精与 KAu(CN)之间的这种分子识别过程可以应用于室温下从活性炭表面提取金。此外,该提取过程对 Au(CN)具有选择性,而对与 α-环糊精结合亲和力较低的 Ag(CN)则没有选择性。原则上,这个分子识别过程可以集成到商业采金协议中,从而显著降低成本、能源消耗和环境影响。