Suppr超能文献

基于优化嵌入强化学习的环岛场景下自动驾驶车辆自适应决策

Adaptive Decision-Making for Automated Vehicles Under Roundabout Scenarios Using Optimization Embedded Reinforcement Learning.

出版信息

IEEE Trans Neural Netw Learn Syst. 2021 Dec;32(12):5526-5538. doi: 10.1109/TNNLS.2020.3042981. Epub 2021 Nov 30.

Abstract

The roundabout is a typical changeable, interactive scenario in which automated vehicles should make adaptive and safe decisions. In this article, an optimization embedded reinforcement learning (OERL) is proposed to achieve adaptive decision-making under the roundabout. The promotion is the modified actor of the Actor-Critic framework, which embeds the model-based optimization method in reinforcement learning to explore continuous behaviors in action space directly. Therefore, the proposed method can determine the macroscale behavior (change lane or not) and medium-scale behaviors of desired acceleration and action time simultaneously with high sample efficiency. When scenarios change, medium-scale behaviors can be adjusted timely by the embedded direct search method, promoting the adaptability of decision-making. More notably, the modified actor matches human drivers' behaviors, macroscale behavior captures the human mind's jump, and medium-scale behaviors are preferentially adjusted through driving skills. To enable the agent adapts to different types of the roundabout, task representation is designed to restructure the policy network. In experiments, the algorithm efficiency and the learned driving strategy are compared with decision-making containing macroscale behavior and constant medium-scale behaviors of the desired acceleration and action time. To investigate the adaptability, the performance under an untrained type of roundabout and two more dangerous situations are simulated to verify that the proposed method changes the decisions with changeable scenarios accordingly. The results show that the proposed method has high algorithm efficiency and better system performance.

摘要

环岛是一个典型的多变、交互场景,自动驾驶车辆应在此场景中做出自适应和安全的决策。本文提出了一种优化嵌入式强化学习(OERL)方法,以实现环岛环境下的自适应决策。该方法的提升在于强化学习中的基于模型优化方法被嵌入到 Actor-Critic 框架的动作中,从而可以直接在动作空间中探索连续行为。因此,该方法可以以高样本效率同时确定宏观行为(是否变道)和期望加速度和动作时间的中观行为。当场景发生变化时,嵌入式直接搜索方法可以及时调整中观行为,从而提高决策的适应性。更值得注意的是,改进后的动作与人类驾驶员的行为相匹配,宏观行为捕捉了人类思维的跳跃,而中观行为则通过驾驶技能进行优先调整。为了使智能体适应不同类型的环岛,设计了任务表示来重构策略网络。在实验中,将算法效率和学习到的驾驶策略与包含宏观行为和期望加速度和动作时间不变的中观行为的决策进行了比较。为了研究适应性,模拟了未训练类型的环岛和两种更危险的情况,以验证所提出的方法可以根据变化的场景相应地改变决策。结果表明,该方法具有较高的算法效率和更好的系统性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验