Suppr超能文献

牙槽嵴萎缩导致正畸牙移动过程中出现骨开窗。

Bone dehiscence formation during orthodontic tooth movement through atrophic alveolar ridges.

出版信息

Angle Orthod. 2020 May 1;90(3):321-329. doi: 10.2319/063019-443.1.

Abstract

OBJECTIVES

To test the null hypothesis that there is no difference in bone dehiscence formation before and after orthodontic tooth movement through an atrophic alveolar ridge.

MATERIAL AND METHODS

This longitudinal retrospective study evaluated pretreatment and posttreatment cone-beam computed tomography imaging of 15 adult patients. Twenty-five teeth were moved through the atrophic alveolar bone, whereas 25 teeth not subjected to translational movement were considered controls. The distances between the cementoenamel junction and the alveolar bone crest were assessed at the mesial, distal, buccal, and lingual surfaces of all of these teeth. Data were compared using the Wilcoxon test. The Spearman correlation test and multivariate linear regression analysis were also performed.

RESULTS

In general, crestal bone height was reduced around 0.5 mm in all groups in every direction. Median buccal dehiscence increased significantly (+2.25 mm) (P < .05) in teeth moved through the atrophic ridge. Control teeth also had buccal crest loss (+0.83 mm), but this was not statistically different from that of the experimental teeth. Lingual dehiscence increased significantly for the experimental (+0.17 mm) and control (+0.65 mm) groups. Mesial bone height decreased more in the control group (-0.44mm) than in the experimental group (-0.14mm). There was moderate correlation between amount of tooth movement and alveolar bone loss.

CONCLUSIONS

The null hypothesis was rejected as dehiscence increased after tooth movement through an atrophic alveolar ridge, mainly in the buccal plate.

摘要

目的

通过分析萎缩牙槽嵴正畸牙移动前后的骨开窗形成情况,检验不存在骨开窗的假设。

材料和方法

这是一项纵向回顾性研究,共评估了 15 名成年患者的治疗前和治疗后的锥形束 CT 图像。25 颗牙通过萎缩牙槽骨移动,25 颗未发生平移移动的牙作为对照。评估了所有这些牙齿的近中、远中、颊侧和舌侧牙槽嵴顶与牙釉牙骨质界之间的距离。使用 Wilcoxon 检验比较数据。还进行了 Spearman 相关检验和多元线性回归分析。

结果

一般来说,在各个方向上,所有组的牙槽嵴顶高度都减少了约 0.5mm。在经过萎缩牙槽嵴的牙齿中,颊侧骨开窗明显增加(+2.25mm)(P<.05)。对照组的牙齿也有颊侧骨嵴丧失(+0.83mm),但与实验组相比没有统计学差异。实验组(+0.17mm)和对照组(+0.65mm)的舌侧骨开窗均显著增加。对照组的近中牙槽骨高度下降(-0.44mm)比实验组(-0.14mm)更明显。牙齿移动量与牙槽骨丧失量之间存在中度相关性。

结论

牙通过萎缩牙槽嵴移动后,骨开窗增加,这一假设被拒绝,主要是在颊侧骨板。

相似文献

1
Bone dehiscence formation during orthodontic tooth movement through atrophic alveolar ridges.
Angle Orthod. 2020 May 1;90(3):321-329. doi: 10.2319/063019-443.1.
3
Are there bone dehiscences in maxillary canines orthodontically moved into the grafted alveolar cleft?
Am J Orthod Dentofacial Orthop. 2015 Feb;147(2):205-13. doi: 10.1016/j.ajodo.2014.10.027.
4
Peridental bone changes after orthodontic tooth movement with fixed appliances: A cone-beam computed tomographic study.
Angle Orthod. 2017 Sep;87(5):672-680. doi: 10.2319/102716-774.1. Epub 2017 May 29.
9
Dehiscence and fenestration in patients with Class I and Class II Division 1 malocclusion assessed with cone-beam computed tomography.
Am J Orthod Dentofacial Orthop. 2010 Aug;138(2):133.e1-7; discussion 133-5. doi: 10.1016/j.ajodo.2010.02.021.
10
Dehiscence and fenestration in skeletal Class I, II, and III malocclusions assessed with cone-beam computed tomography.
Angle Orthod. 2012 Jan;82(1):67-74. doi: 10.2319/040811-250.1. Epub 2011 Jun 22.

引用本文的文献

1
Alveolar bone defects influence rate of tooth movement.
Angle Orthod. 2025 May 28;95(5):522-529. doi: 10.2319/121224-1019.1. eCollection 2025 Sep.
8
Evaluation´ of mandibular alveolar bone in patients with different vertical facial patterns : A cross-sectional CBCT study.
J Orofac Orthop. 2024 Mar;85(2):89-97. doi: 10.1007/s00056-022-00408-4. Epub 2022 Jul 5.
9
How well do integrated 3D models predict alveolar defects after treatment with clear aligners?
Angle Orthod. 2021 May 1;91(3):313-319. doi: 10.2319/042220-342.1.

本文引用的文献

1
Peridental bone changes after orthodontic tooth movement with fixed appliances: A cone-beam computed tomographic study.
Angle Orthod. 2017 Sep;87(5):672-680. doi: 10.2319/102716-774.1. Epub 2017 May 29.
4
Accuracy of cone-beam computed tomography in detecting alveolar bone dehiscences and fenestrations.
Am J Orthod Dentofacial Orthop. 2015 Mar;147(3):313-23. doi: 10.1016/j.ajodo.2014.10.032.
7
Evaluation of dehiscences using cone beam computed tomography.
Angle Orthod. 2012 Jan;82(1):122-30. doi: 10.2319/020911-95.1. Epub 2011 Jul 27.
8
Dehiscence and fenestration in skeletal Class I, II, and III malocclusions assessed with cone-beam computed tomography.
Angle Orthod. 2012 Jan;82(1):67-74. doi: 10.2319/040811-250.1. Epub 2011 Jun 22.
9
Orthodontic tooth movement into edentulous ridge areas--a case series.
Eur J Orthod. 2013 Jun;35(3):277-85. doi: 10.1093/ejo/cjr029. Epub 2011 Mar 2.
10
Dehiscence and fenestration in patients with Class I and Class II Division 1 malocclusion assessed with cone-beam computed tomography.
Am J Orthod Dentofacial Orthop. 2010 Aug;138(2):133.e1-7; discussion 133-5. doi: 10.1016/j.ajodo.2010.02.021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验