Department of Mathematics and Statisitics, University of Wyoming, 1000 E. University, Laramie, WY 82071, USA.
Department of Molecular Biology, University of Wyoming, 1000 E. University, Laramie, WY 82071, USA.
Math Biosci Eng. 2020 Nov 13;17(6):8182-8201. doi: 10.3934/mbe.2020415.
Industrial bioreactors use microbial organisms as living factories to produce a wide range of commercial products. For most applications, yields eventually become limited by the proliferation of "escape mutants" that acquire a growth advantage by losing the ability to make product. The goal of this work is to use mathematical models to determine whether this problem could be addressed in continuous flow bioreactors that include a "stem cell" population that multiplies rapidly and could be used to compete against the emergence of cheater mutants. In this system, external stimuli can be used to induce stem cell multiplication through symmetric cell division, or to limit stem cell multiplication and induce higher production through an asymmetric cell division that produces one stem cell and one new product-producing "factory cell". Our results show product yields from bioreactors with microbial stem cells can be increased by 18% to 127% over conventional methods, and sensitivity analysis shows that yields could be improved over a broad range of parameter space.
工业生物反应器利用微生物作为活的工厂来生产各种商业产品。对于大多数应用,产量最终会受到“逃逸突变体”增殖的限制,这些突变体通过失去生产产品的能力获得了生长优势。这项工作的目标是使用数学模型来确定在连续流生物反应器中是否可以解决这个问题,该生物反应器包括一个快速增殖的“干细胞”群体,可以用来对抗骗子突变体的出现。在这个系统中,可以利用外部刺激通过对称细胞分裂诱导干细胞增殖,或者通过不对称细胞分裂来限制干细胞增殖并诱导更高的产物生成,该分裂产生一个干细胞和一个新的产物产生“工厂细胞”。我们的结果表明,使用微生物干细胞的生物反应器的产物产量可以比传统方法提高 18%到 127%,敏感性分析表明,在广泛的参数空间内都可以提高产量。