Rugbjerg Peter, Myling-Petersen Nils, Porse Andreas, Sarup-Lytzen Kira, Sommer Morten O A
The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, DK-2800, Kongens Lyngby, Denmark.
Nat Commun. 2018 Feb 20;9(1):787. doi: 10.1038/s41467-018-03232-w.
A transition toward sustainable bio-based chemical production is important for green growth. However, productivity and yield frequently decrease as large-scale microbial fermentation progresses, commonly ascribed to phenotypic variation. Yet, given the high metabolic burden and toxicities, evolutionary processes may also constrain bio-based production. We experimentally simulate large-scale fermentation with mevalonic acid-producing Escherichia coli. By tracking growth rate and production, we uncover how populations fully sacrifice production to gain fitness within 70 generations. Using ultra-deep (>1000×) time-lapse sequencing of the pathway populations, we identify multiple recurring intra-pathway genetic error modes. This genetic heterogeneity is only detected using deep-sequencing and new population-level bioinformatics, suggesting that the problem is underestimated. A quantitative model explains the population dynamics based on enrichment of spontaneous mutant cells. We validate our model by tuning production load and escape rate of the production host and apply multiple orthogonal strategies for postponing genetically driven production declines.
向可持续的生物基化学品生产转型对于绿色增长至关重要。然而,随着大规模微生物发酵的进行,生产力和产量常常会下降,这通常归因于表型变异。然而,鉴于高代谢负担和毒性,进化过程也可能限制生物基生产。我们用产甲羟戊酸的大肠杆菌进行实验模拟大规模发酵。通过跟踪生长速率和产量,我们发现群体如何在70代内完全牺牲产量以获得适应性。通过对途径群体进行超深度(>1000×)延时测序,我们确定了多种反复出现的途径内遗传错误模式。这种遗传异质性只有通过深度测序和新的群体水平生物信息学才能检测到,这表明这个问题被低估了。一个定量模型基于自发突变细胞的富集解释了群体动态。我们通过调整生产宿主的生产负荷和逃逸率来验证我们的模型,并应用多种正交策略来推迟基因驱动的产量下降。