Suppr超能文献

利用先进的波数选择技术识别能改善水稻样品中直链淀粉预测的关键波数。

Identifying key wavenumbers that improve prediction of amylose in rice samples utilizing advanced wavenumber selection techniques.

作者信息

Mishra Puneet, Woltering Ernst J

机构信息

Wageningen Food and Biobased Research, Bornse Weilanden 9, P.O. Box 17, 6700AA, Wageningen, the Netherlands.

Wageningen Food and Biobased Research, Bornse Weilanden 9, P.O. Box 17, 6700AA, Wageningen, the Netherlands; Horticulture and Product Physiology Group, Wageningen University, Droevendaalsesteeg 1, P.O. Box 630, 6700AP, Wageningen, the Netherlands.

出版信息

Talanta. 2021 Mar 1;224:121908. doi: 10.1016/j.talanta.2020.121908. Epub 2020 Nov 25.

Abstract

This study utilizes advanced wavenumber selection techniques to improve the prediction of amylose content in grounded rice samples with near-infrared spectroscopy. Four different wavenumber selection techniques, i.e. covariate selection (CovSel), variable combination population analysis (VCPA), bootstrapping soft shrinkage (BOSS) and variable combination population analysis-iteratively retains informative variables (VCPA-IRIV), were used for model optimization and key wavenumbers selection. The results of the several wavenumber selection techniques were compared with the predictions reported previously on the same data set. All the four wavenumber selection techniques improved the predictive performance of amylose in rice samples. The best performance was obtained with VCPA, where, with only 11 wavenumbers-based model, the prediction error was reduced by 19% compared to what reported previously on the same data set. The selected wavenumbers can help in development of low-cost multi-spectral sensors for amylose prediction in rice samples.

摘要

本研究利用先进的波数选择技术,通过近红外光谱法改进对磨碎大米样品中直链淀粉含量的预测。四种不同的波数选择技术,即协变量选择(CovSel)、变量组合总体分析(VCPA)、自训练软收缩(BOSS)和变量组合总体分析-迭代保留信息变量(VCPA-IRIV),用于模型优化和关键波数选择。将几种波数选择技术的结果与之前在同一数据集上报告的预测结果进行了比较。所有四种波数选择技术均提高了大米样品中直链淀粉的预测性能。VCPA获得了最佳性能,基于仅11个波数的模型,与之前在同一数据集上报告的结果相比,预测误差降低了19%。所选波数有助于开发低成本的多光谱传感器,用于预测大米样品中的直链淀粉含量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验