Suppr超能文献

利用高光谱成像技术对红茶发酵过程中儿茶素含量进行无损检测和可视化。

Nondestructive Testing and Visualization of Catechin Content in Black Tea Fermentation Using Hyperspectral Imaging.

机构信息

Tea Research Institute, The Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.

College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832000, China.

出版信息

Sensors (Basel). 2021 Dec 2;21(23):8051. doi: 10.3390/s21238051.

Abstract

Catechin is a major reactive substance involved in black tea fermentation. It has a determinant effect on the final quality and taste of made teas. In this study, we applied hyperspectral technology with the chemometrics method and used different pretreatment and variable filtering algorithms to reduce noise interference. After reduction of the spectral data dimensions by principal component analysis (PCA), an optimal prediction model for catechin content was constructed, followed by visual analysis of catechin content when fermenting leaves for different periods of time. The results showed that zero mean normalization (Z-score), multiplicative scatter correction (MSC), and standard normal variate (SNV) can effectively improve model accuracy; while the shuffled frog leaping algorithm (SFLA), the variable combination population analysis genetic algorithm (VCPA-GA), and variable combination population analysis iteratively retaining informative variables (VCPA-IRIV) can significantly reduce spectral data and enhance the calculation speed of the model. We found that nonlinear models performed better than linear ones. The prediction accuracy for the total amount of catechins and for epicatechin gallate (ECG) of the extreme learning machine (ELM), based on optimal variables, reached 0.989 and 0.994, respectively, and the prediction accuracy for EGC, C, EC, and EGCG of the content support vector regression (SVR) models reached 0.972, 0.993, 0.990, and 0.994, respectively. The optimal model offers accurate prediction, and visual analysis can determine the distribution of the catechin content when fermenting leaves for different fermentation periods. The findings provide significant reference material for intelligent digital assessment of black tea during processing.

摘要

儿茶素是红茶发酵过程中涉及的主要反应物质。它对制成茶叶的最终质量和口感有决定性影响。在这项研究中,我们应用高光谱技术和化学计量学方法,使用不同的预处理和变量滤波算法来减少噪声干扰。在通过主成分分析(PCA)降低光谱数据维度后,构建了儿茶素含量的最佳预测模型,然后对不同发酵时间的发酵叶儿茶素含量进行了可视化分析。结果表明,零均值归一化(Z-score)、乘法散射校正(MSC)和标准正态变量(SNV)可以有效提高模型精度;而随机青蛙跳跃算法(SFLA)、变量组合种群分析遗传算法(VCPA-GA)和变量组合种群分析迭代保留信息量变量(VCPA-IRIV)可以显著减少光谱数据并提高模型的计算速度。我们发现非线性模型的性能优于线性模型。基于最优变量,极限学习机(ELM)对儿茶素总量和表没食子儿茶素没食子酸酯(ECG)的预测精度分别达到 0.989 和 0.994,内容支持向量回归(SVR)模型对 ECG、C、EC 和 EGCG 的预测精度分别达到 0.972、0.993、0.990 和 0.994。最优模型提供了准确的预测,可视化分析可以确定不同发酵时间发酵叶儿茶素含量的分布。研究结果为红茶加工过程中的智能数字化评估提供了重要的参考资料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6252/8659440/f07faddc51dc/sensors-21-08051-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验