Keshock Elise, Peng Peisong, Zhou Jiangfeng, Talbayev Diyar
Opt Express. 2020 Dec 7;28(25):38280-38292. doi: 10.1364/OE.411581.
The Faraday effect due to the cyclotron resonance of conduction electrons in semiconductor InSb allows for nonreciprocity of transmitted light in our Faraday THz isolator operating in the presence of a small magnetic field. We select InSb as an efficient medium for our isolator due to its high electron mobility, low electron effective mass, and narrow band gap. Experimental measurements of the isolator performance indicate a maximum achieved isolation power of 18.8 dB with an insertion loss of -12.6 dB. Our optical analysis of the device points to a remarkable nonreciprocal Fabry-Perot effect in the magneto-optical InSb layer as the origin of the multi-fold isolation enhancement. This nonreciprocity occurs as the Fabry-Perot reflections in the forward direction add constructively and enhance the transmittance at certain frequencies, while the Fabry-Perot reflections in the backward direction add destructively and suppress the transmittance at the same frequencies.
由于半导体InSb中传导电子的回旋共振而产生的法拉第效应,使得在存在小磁场的情况下运行的我们的法拉太赫兹隔离器中,透射光具有非互易性。我们选择InSb作为隔离器的有效介质,是因为它具有高电子迁移率、低电子有效质量和窄带隙。隔离器性能的实验测量表明,实现的最大隔离功率为18.8 dB,插入损耗为-12.6 dB。我们对该器件的光学分析表明,磁光InSb层中显著的非互易法布里-珀罗效应是多重隔离增强的起源。这种非互易性的出现是因为正向的法布里-珀罗反射相长叠加并在某些频率下增强了透射率,而反向的法布里-珀罗反射相消叠加并在相同频率下抑制了透射率。