Schönhense G, Babenkov S, Vasilyev D, Elmers H-J, Medjanik K
Johannes Gutenberg-Universität, Institut für Physik, 55128 Mainz, Germany.
Rev Sci Instrum. 2020 Dec 1;91(12):123110. doi: 10.1063/5.0024074.
Photoelectron momentum microscopy is an emerging powerful method for angle-resolved photoelectron spectroscopy (ARPES), especially in combination with imaging spin filters. These instruments record k-k images, typically exceeding a full Brillouin zone. As energy filters, double-hemispherical or time-of-flight (ToF) devices are in use. Here, we present a new approach for momentum mapping of the full half-space, based on a large single hemispherical analyzer (path radius of 225 mm). Excitation by an unfocused He lamp yielded an energy resolution of 7.7 meV. The performance is demonstrated by k-imaging of quantum-well states in Au and Xe multilayers. The α-aberration term (α, entrance angle in the dispersive plane) and the transit-time spread of the electrons in the spherical field are studied in a large pass-energy (6 eV-660 eV) and angular range (α up to ±7°). It is discussed how the method circumvents the preconditions of previous theoretical work on the resolution limitation due to the α-term and the transit-time spread, being detrimental for time-resolved experiments. Thanks to k-resolved detection, both effects can be corrected numerically. We introduce a dispersive-plus-ToF hybrid mode of operation, with an imaging ToF analyzer behind the exit slit of the hemisphere. This instrument captures 3D data arrays I (E, k, k), yielding a gain up to N in recording efficiency (N being the number of resolved time slices). A key application will be ARPES at sources with high pulse rates such as synchrotrons with 500 MHz time structure.
光电子动量显微镜是一种新兴的用于角分辨光电子能谱(ARPES)的强大方法,特别是与成像自旋滤波器结合使用时。这些仪器记录k-k图像,通常超过一个完整的布里渊区。作为能量滤波器,使用的是双半球形或飞行时间(ToF)装置。在此,我们提出一种基于大型单半球形分析仪(路径半径为225毫米)的全半空间动量映射新方法。由未聚焦的氦灯激发产生的能量分辨率为7.7毫电子伏特。通过对金和氙多层膜中量子阱态的k成像展示了该性能。在较大的通过能量(6电子伏特 - 660电子伏特)和角度范围(α高达±7°)内研究了α像差项(α,色散平面中的入射角)和电子在球形场中的渡越时间展宽。讨论了该方法如何规避先前关于由于α项和渡越时间展宽导致分辨率限制的理论工作的前提条件,这些条件对时间分辨实验不利。由于k分辨检测,这两种效应都可以通过数值方法校正。我们引入了一种色散加ToF混合操作模式,在半球形出口狭缝后面有一个成像ToF分析仪。该仪器捕获三维数据阵列I(E,k,k),在记录效率上提高了N倍(N是分辨的时间切片数量)。一个关键应用将是在具有高脉冲率的光源(如具有500兆赫兹时间结构的同步加速器)上进行ARPES实验。