Suppr超能文献

打破回声状态网络中储层方程的对称性。

Breaking symmetries of the reservoir equations in echo state networks.

作者信息

Herteux Joschka, Räth Christoph

机构信息

Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt, Münchner Str. 20, 82234 Wessling, Germany.

出版信息

Chaos. 2020 Dec;30(12):123142. doi: 10.1063/5.0028993.

Abstract

Reservoir computing has repeatedly been shown to be extremely successful in the prediction of nonlinear time-series. However, there is no complete understanding of the proper design of a reservoir yet. We find that the simplest popular setup has a harmful symmetry, which leads to the prediction of what we call mirror-attractor. We prove this analytically. Similar problems can arise in a general context, and we use them to explain the success or failure of some designs. The symmetry is a direct consequence of the hyperbolic tangent activation function. Furthermore, four ways to break the symmetry are compared numerically: A bias in the output, a shift in the input, a quadratic term in the readout, and a mixture of even and odd activation functions. First, we test their susceptibility to the mirror-attractor. Second, we evaluate their performance on the task of predicting Lorenz data with the mean shifted to zero. The short-time prediction is measured with the forecast horizon while the largest Lyapunov exponent and the correlation dimension are used to represent the climate. Finally, the same analysis is repeated on a combined dataset of the Lorenz attractor and the Halvorsen attractor, which we designed to reveal potential problems with symmetry. We find that all methods except the output bias are able to fully break the symmetry with input shift and quadratic readout performing the best overall.

摘要

储层计算在非线性时间序列预测中已多次被证明极为成功。然而,目前对于储层的合理设计仍缺乏全面的理解。我们发现,最简单的常见设置存在一种有害的对称性,这会导致对我们所谓的镜像吸引子的预测。我们通过分析证明了这一点。类似的问题可能在一般情况下出现,我们利用这些问题来解释某些设计的成功或失败。这种对称性是双曲正切激活函数的直接结果。此外,我们通过数值比较了四种打破对称性的方法:输出偏差、输入偏移、读出中的二次项以及奇偶激活函数的混合。首先,我们测试它们对镜像吸引子的敏感性。其次,我们评估它们在预测均值移至零的洛伦兹数据任务中的性能。短期预测用预测范围来衡量,而最大李雅普诺夫指数和关联维数用于表征气候。最后,我们在洛伦兹吸引子和哈尔沃森吸引子的组合数据集上重复相同的分析,我们设计该数据集以揭示对称性的潜在问题。我们发现,除了输出偏差之外,所有方法都能够通过输入偏移和二次读出完全打破对称性,总体上输入偏移和二次读出表现最佳。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验