Suppr超能文献

在多功能储层计算机中,对称性会破坏平方律。

Symmetry kills the square in a multifunctional reservoir computer.

作者信息

Flynn Andrew, Herteux Joschka, Tsachouridis Vassilios A, Räth Christoph, Amann Andreas

机构信息

School of Mathematical Sciences, University College Cork, Cork T12 XF62, Ireland.

Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft-und Raumfahrt, Münchner Str. 20, 82234 Wessling, Germany.

出版信息

Chaos. 2021 Jul;31(7):073122. doi: 10.1063/5.0055699.

Abstract

The learning capabilities of a reservoir computer (RC) can be stifled due to symmetry in its design. Including quadratic terms in the training of a RC produces a "square readout matrix" that breaks the symmetry to quell the influence of "mirror-attractors," which are inverted copies of the RC's solutions in state space. In this paper, we prove analytically that certain symmetries in the training data forbid the square readout matrix to exist. These analytical results are explored numerically from the perspective of "multifunctionality," by training the RC to specifically reconstruct a coexistence of the Lorenz attractor and its mirror-attractor. We demonstrate that the square readout matrix emerges when the position of one attractor is slightly altered, even if there are overlapping regions between the attractors or if there is a second pair of attractors. We also find that at large spectral radius values of the RC's internal connections, the square readout matrix reappears prior to the RC crossing the edge of chaos.

摘要

由于储层计算机(RC)设计中的对称性,其学习能力可能会受到抑制。在RC的训练中包含二次项会产生一个“平方读出矩阵”,该矩阵打破对称性以抑制“镜像吸引子”的影响,“镜像吸引子”是RC在状态空间中的解的反转副本。在本文中,我们通过分析证明训练数据中的某些对称性禁止平方读出矩阵的存在。从“多功能性”的角度对这些分析结果进行了数值探索,通过训练RC来专门重建洛伦兹吸引子及其镜像吸引子的共存。我们证明,即使吸引子之间存在重叠区域或存在第二对吸引子,当一个吸引子的位置略有改变时,平方读出矩阵就会出现。我们还发现,在RC内部连接的大谱半径值处,平方读出矩阵在RC越过混沌边缘之前重新出现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验