Suppr超能文献

通过分析复发情况揭示多重大脑网络。

Revealing a multiplex brain network through the analysis of recurrences.

机构信息

Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, 420500 Innopolis, The Republic of Tatarstan, Russia.

出版信息

Chaos. 2020 Dec;30(12):121108. doi: 10.1063/5.0028053.

Abstract

A multilayer approach has recently received particular attention in network neuroscience as a suitable model to describe brain dynamics by adjusting its activity in different frequency bands, time scales, modalities, or ages to different layers of a multiplex graph. In this paper, we demonstrate an approach to a frequency-based multilayer functional network constructed from nonstationary multivariate data by analyzing recurrences in application to electroencephalography. Using the recurrence-based index of synchronization, we construct intralayer (within-frequency) and interlayer (cross-frequency) graph edges to model the evolution of a whole-head functional connectivity network during a prolonged stimuli classification task. We demonstrate that the graph edges' weights increase during the experiment and negatively correlate with the response time. We also show that while high-frequency activity evolves toward synchronization of remote local areas, low-frequency connectivity tends to establish large-scale coupling between them.

摘要

多层方法最近在网络神经科学中受到特别关注,作为一种合适的模型,可以通过在不同的频率带、时间尺度、模态或年龄将其活动调整到多路复用图的不同层来描述大脑动力学。在本文中,我们展示了一种基于频率的多层功能网络的方法,该方法是通过分析应用于脑电图的递归来构建的。使用基于递归的同步指数,我们构建了层内(在频率内)和层间(跨频率)的图边缘,以在长时间的刺激分类任务期间模拟整个头部功能连接网络的演变。我们证明了图边缘的权重在实验过程中增加,并与响应时间呈负相关。我们还表明,虽然高频活动朝着远程局部区域的同步发展,但低频连接倾向于在它们之间建立大规模的耦合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验