Suppr超能文献

不同关联体系下的定制耦合簇理论

Tailored coupled cluster theory in varying correlation regimes.

作者信息

Mörchen Maximilian, Freitag Leon, Reiher Markus

机构信息

ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.

出版信息

J Chem Phys. 2020 Dec 28;153(24):244113. doi: 10.1063/5.0032661.

Abstract

The tailored coupled cluster (TCC) approach is a promising ansatz that preserves the simplicity of single-reference coupled cluster theory while incorporating a multi-reference wave function through amplitudes obtained from a preceding multi-configurational calculation. Here, we present a detailed analysis of the TCC wave function based on model systems, which require an accurate description of both static and dynamic correlation. We investigate the reliability of the TCC approach with respect to the exact wave function. In addition to the error in the electronic energy and standard coupled cluster diagnostics, we exploit the overlap of TCC and full configuration interaction wave functions as a quality measure. We critically review issues, such as the required size of the active space, size-consistency, symmetry breaking in the wave function, and the dependence of TCC on the reference wave function. We observe that possible errors caused by symmetry breaking can be mitigated by employing the determinant with the largest weight in the active space as reference for the TCC calculation. We find the TCC model to be promising in calculations with active orbital spaces which include all orbitals with a large single-orbital entropy, even if the active spaces become very large and then may require modern active-space approaches that are not restricted to comparatively small numbers of orbitals. Furthermore, utilizing large active spaces can improve on the TCC wave function approximation and reduce the size-consistency error because the presence of highly excited determinants affects the accuracy of the coefficients of low-excited determinants in the active space.

摘要

定制耦合簇(TCC)方法是一种很有前景的近似方法,它保留了单参考耦合簇理论的简单性,同时通过从先前的多组态计算中获得的振幅纳入多参考波函数。在此,我们基于模型系统对TCC波函数进行了详细分析,这些模型系统需要对静态和动态关联进行精确描述。我们研究了TCC方法相对于精确波函数的可靠性。除了电子能量误差和标准耦合簇诊断外,我们还利用TCC与完全组态相互作用波函数的重叠作为质量度量。我们严格审查了一些问题,如活性空间的所需大小、大小一致性、波函数中的对称性破缺以及TCC对参考波函数的依赖性。我们观察到,通过在活性空间中使用权重最大的行列式作为TCC计算的参考,可以减轻由对称性破缺引起的可能误差。我们发现TCC模型在具有活性轨道空间的计算中很有前景,这些活性轨道空间包括所有具有大单轨道熵的轨道,即使活性空间变得非常大,进而可能需要不限于相对少量轨道的现代活性空间方法。此外,使用大的活性空间可以改进TCC波函数近似并减少大小一致性误差,因为高激发行列式的存在会影响活性空间中低激发行列式系数的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验