School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601,China.
Department of Mathematics, Khawaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Kahn, Department of Mathematics, University of the Punjab Lahore 54590,Pakistan.
Comb Chem High Throughput Screen. 2022;25(3):536-546. doi: 10.2174/1386207323666201230092354.
In this paper, we present a novel hybrid model m-polar Diophantine fuzzy N-soft set and define its operations.
We generalize the concepts of fuzzy sets, soft sets, N-soft sets, fuzzy soft sets, intuitionistic fuzzy sets, intuitionistic fuzzy soft sets, Pythagorean fuzzy sets, Pythagorean fuzzy soft sets and Pythagorean fuzzy N-soft sets by incorporating our proposed model. Additionally, we define three different sorts of complements for Pythagorean fuzzy N-soft sets and examine few outcomes, which do not hold in Pythagorean fuzzy N-soft sets complements unlike to crisp set. We further discuss (α, β, γ) -cut of m-polar Diophantine fuzzy N-soft sets and their properties. Lastly, we prove our claim that the defined model is a generalization of the soft set, N-soft set, fuzzy Nsoft set, intuitionistic fuzzy N soft set, and Pythagorean fuzzy N-soft set.
m-polar Diophantine fuzzy N-soft set is more efficient and an adaptable model to manage uncertainties as it also overcomes drawbacks of existing models, which are to be generalized.
We introduced the novel concept of m-polar Diophantine fuzzy N-soft sets (MPDFNS sets).
在本文中,我们提出了一种新的混合模型 m-极性丢番图模糊 N-软集,并定义了其运算。
通过引入我们提出的模型,推广了模糊集、软集、N-软集、模糊软集、直觉模糊集、直觉模糊软集、Pythagorean 模糊集、Pythagorean 模糊软集和 Pythagorean 模糊 N-软集的概念。此外,我们定义了 Pythagorean 模糊 N-软集的三种不同补集,并研究了一些不同于清晰集的结论,这些结论在 Pythagorean 模糊 N-软集补集中不成立。我们进一步讨论了 m-极性丢番图模糊 N-软集的(α,β,γ)-截集及其性质。最后,我们证明了所定义的模型是软集、N-软集、模糊 N-软集、直觉模糊 N-软集和 Pythagorean 模糊 N-软集的推广。
m-极性丢番图模糊 N-软集是一种更有效和适应性更强的模型,可以管理不确定性,因为它还克服了现有模型的缺点,需要进行推广。
我们引入了 m-极性丢番图模糊 N-软集(MPDFNS 集)的新概念。