Hu Jenny, Bruch Quinton J, Miller Alexander J M
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States.
J Am Chem Soc. 2021 Jan 20;143(2):945-954. doi: 10.1021/jacs.0c11110. Epub 2020 Dec 31.
The catalytic hydrogenation of carbon dioxide holds immense promise for applications in sustainable fuel synthesis and hydrogen storage. Mechanistic studies that connect thermodynamic parameters with the kinetics of catalysis can provide new understanding and guide predictive design of improved catalysts. Reported here are thermochemical and kinetic analyses of a new pincer-ligated rhenium complex (POCOP)Re(CO) (POCOP = 2,6-bis(di--butylphosphinito)phenyl) that catalyzes CO hydrogenation to formate with faster rates at lower temperatures. Because the catalyst follows the prototypical "outer sphere" hydrogenation mechanism, comprehensive studies of temperature and solvent effects on the H splitting and hydride transfer steps are expected to be relevant to many other catalysts. Strikingly large entropy associated with cleavage of H results in a strong temperature dependence on the concentration of [(POCOP)Re(CO)H] present during catalysis, which is further impacted by changing the solvent from toluene to tetrahydrofuran to acetonitrile. New methods for determining the hydricity of metal hydrides and formate at temperatures other than 298 K are developed, providing insight into how temperature can influence the favorability of hydride transfer during catalysis. These thermochemical insights guided the selection of conditions for CO hydrogenation to formate with high activity (up to 364 h at 1 atm or 3330 h at 20 atm of 1:1 H:CO). In cases where hydride transfer is the highest individual kinetic barrier, entropic contributions to outer sphere H splitting lead to a unique temperature dependence: catalytic activity increases as temperature decreases in tetrahydrofuran (200-fold increase upon cooling from 50 to 0 °C) and toluene (4-fold increase upon cooling from 100 to 50 °C). Ramifications on catalyst structure-function relationships are discussed, including comparisons between "outer sphere" mechanisms and "metal-ligand cooperation" mechanisms.
二氧化碳的催化加氢在可持续燃料合成和氢储存应用方面具有巨大潜力。将热力学参数与催化动力学联系起来的机理研究能够提供新的认识,并指导改进催化剂的预测性设计。本文报道了一种新型钳形配位铼配合物(POCOP)Re(CO)(POCOP = 2,6 - 双(二 - 丁基次膦酰基)苯基)的热化学和动力学分析,该配合物在较低温度下能以更快的速率催化CO加氢生成甲酸盐。由于该催化剂遵循典型的“外球”加氢机理,因此对温度和溶剂对氢裂解和氢化物转移步骤的影响进行全面研究有望与许多其他催化剂相关。与H裂解相关的显著大熵导致催化过程中[(POCOP)Re(CO)H]浓度对温度有强烈依赖性,而将溶剂从甲苯改为四氢呋喃再改为乙腈会进一步影响这种依赖性。开发了在298 K以外温度测定金属氢化物和甲酸盐酸度的新方法,这有助于深入了解温度如何影响催化过程中氢化物转移的有利程度。这些热化学见解指导了选择高活性CO加氢生成甲酸盐的条件(在1 atm下高达364 h,或在20 atm的1:1 H₂:CO下高达3330 h)。在氢化物转移是单个最高动力学屏障的情况下,外球氢裂解的熵贡献导致独特的温度依赖性:在四氢呋喃中催化活性随温度降低而增加(从50℃冷却到0℃时增加200倍),在甲苯中也是如此(从100℃冷却到50℃时增加4倍)。文中讨论了对催化剂结构 - 功能关系的影响,包括“外球”机理和“金属 - 配体协同”机理之间的比较。