Suppr超能文献

Proportion and location of spinal neurons receiving ventral root afferent inputs in the cat.

作者信息

Kim J, Shin H K, Nam S C, Chung J M

机构信息

Marine Biomedical Institute, University of Texas Medical Branch, Galveston 77550.

出版信息

Exp Neurol. 1988 Feb;99(2):296-314. doi: 10.1016/0014-4886(88)90149-5.

Abstract

Spinal neurons receiving ventral root afferent inputs were investigated in anesthetized and paralyzed cats. We were concerned with the afferent fibers in the ventral root that travel distally and then enter the spinal cord through the dorsal root. The questions to be answered included the proportion and distribution of spinal neurons receiving ventral root afferent inputs and their peripheral input characteristics. The 1.7 ventral root was cut near the spinal cord and the distal stump was stimulated while making a systematic search for neurons in the entire gray matter of the ipsilateral spinal cord that responded to the stimulation. The following conclusions were made: (i) the afferent fibers in the cat ventral root enter the spinal cord through the dorsal root and evoke a variety of responses (excitation, inhibition, or mixed) in a large proportion of spinal neurons (about 20%): (ii) these responses seem to be mediated largely by spinal mechanisms: (iii) spinal neurons receiving ventral root afferent inputs are situated in a wide region of the ventral spinal cord: (iv) ventral root fibers in a single root enter the spinal cord and exert their responses over a large region of the spinal cord (at least two spinal segments rostrally and caudally): (v) some of the spinal neurons that responded to ventral root stimulation were found to be ascending tract cells, suggesting that ventral root afferent inputs can reach supraspinal structures: (vi) ventral root afferent fibers converge onto spinal neurons that have a variety of peripheral receptive field characteristics: and (vii) with some exceptions, most neurons receiving ventral root inputs were excited best by mechanical and/or thermal noxious stimuli applied to the periphery.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验