Suppr超能文献

电芬顿技术用碳质阴极材料:机理、动力学、最新进展、机遇与挑战。

Carbonaceous cathode materials for electro-Fenton technology: Mechanism, kinetics, recent advances, opportunities and challenges.

机构信息

Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology, Sligo, F91 YW50, Ireland; Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, Institute of Technology, Sligo, F91 YW50, Ireland.

Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology, Sligo, F91 YW50, Ireland; Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, Institute of Technology, Sligo, F91 YW50, Ireland.

出版信息

Chemosphere. 2021 Apr;269:129325. doi: 10.1016/j.chemosphere.2020.129325. Epub 2020 Dec 17.

Abstract

Electro-Fenton (EF) technique has gained significant attention in recent years owing to its high efficiency and environmental compatibility for the degradation of organic pollutants and contaminants of emerging concern (CECs). The efficiency of an EF reaction relies primarily on the formation of hydrogen peroxide (HO) via 2e oxygen reduction reaction (ORR) and the generation of hydroxyl radicals (OH). This could be achieved through an efficient cathode material which operates over a wide pH range (pH 3-9). Herein, the current progresses on the advancements of carbonaceous cathode materials for EF reactions are comprehensively reviewed. The insights of various materials such as, activated carbon fibres (ACFs), carbon/graphite felt (CF/GF), carbon nanotubes (CNTs), graphene, carbon aerogels (CAs), ordered mesoporous carbon (OMCs), etc. are discussed inclusively. Transition metals and hetero atoms were used as dopants to enhance the efficiency of homogeneous and heterogeneous EF reactions. Iron-functionalized cathodes widened the working pH window (pH 1-9) and limited the energy consumption. The mechanism, reactor configuration, and kinetic models, are explained. Techno economic analysis of the EF reaction revealed that the anode and the raw materials contributed significantly to the overall cost. It is concluded that most reactions follow pseudo-first order kinetics and rotating cathodes provide the best HO production efficiency in lab scale. The challenges, future prospects and commercialization of EF reaction for wastewater treatment are also discussed.

摘要

电芬顿(EF)技术因其高效、环境友好的特性,在降解有机污染物和新兴关注污染物(CECs)方面受到了广泛关注。EF 反应的效率主要依赖于通过 2e 氧还原反应(ORR)形成过氧化氢(HO)和生成羟基自由基(OH)。这可以通过在较宽的 pH 范围内(pH 3-9)运行的高效阴极材料来实现。本文全面综述了用于 EF 反应的碳质阴极材料的最新进展。讨论了各种材料的见解,如活性炭纤维(ACFs)、碳/石墨毡(CF/GF)、碳纳米管(CNTs)、石墨烯、碳气凝胶(CAs)、有序介孔碳(OMCs)等。过渡金属和杂原子被用作掺杂剂,以提高均相和非均相 EF 反应的效率。铁功能化阴极拓宽了工作 pH 窗口(pH 1-9)并限制了能耗。解释了机理、反应器配置和动力学模型。EF 反应的技术经济分析表明,阳极和原材料对总成本有重大贡献。结论是,大多数反应遵循准一级动力学,旋转阴极在实验室规模下提供了最佳的 HO 生成效率。还讨论了 EF 反应用于废水处理的挑战、未来前景和商业化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验