Suppr超能文献

用于提高综合眼科诊所服务能力的大数据模拟

Big data simulations for capacity improvement in a general ophthalmology clinic.

作者信息

Kern Christoph, König André, Fu Dun Jack, Schworm Benedikt, Wolf Armin, Priglinger Siegfried, Kortuem Karsten U

机构信息

Department of Ophthalmology, University Hospital LMU Munich, Mathildenstraße 8, 80336, Munich, Germany.

Moorfields Eye Hospital, London, UK.

出版信息

Graefes Arch Clin Exp Ophthalmol. 2021 May;259(5):1289-1296. doi: 10.1007/s00417-020-05040-9. Epub 2021 Jan 2.

Abstract

PURPOSE

Long total waiting times (TWT) experienced by patients during a clinic visit have a significant adverse effect on patient's satisfaction. Our aim was to use big data simulations of a patient scheduling calendar and its effect on TWT in a general ophthalmology clinic. Based on the simulation, we implemented changes to the calendar and verified their effect on TWT in clinical practice.

DESIGN AND METHODS

For this retrospective simulation study, we generated a discrete event simulation (DES) model based on clinical timepoints of 4.401 visits to our clinic. All data points were exported from our clinical warehouse for further processing. If not available from the electronic health record, manual time measurements of the process were used. Various patient scheduling models were simulated and evaluated based on their reduction of TWT. The most promising model was implemented into clinical practice in 2017.

RESULTS

During validation of our simulation model, we achieved a high agreement of mean TWT between the real data (229 ± 100 min) and the corresponding simulated data (225 ± 112 min). This indicates a high quality of the simulation model. Following the simulations, a patient scheduling calendar was introduced, which, compared with the old calendar, provided block intervals and extended time windows for patients. The simulated TWT of this model was 153 min. After implementation in clinical practice, TWT per patient in our general ophthalmology clinic has been reduced from 229 ± 100 to 183 ± 89 min.

CONCLUSION

By implementing a big data simulation model, we have achieved a cost-neutral reduction of the mean TWT by 21%. Big data simulation enables users to evaluate variations to an existing system before implementation into clinical practice. Various models for improving patient flow or reducing capacity loads can be evaluated cost-effectively.

摘要

目的

患者在门诊就诊期间经历的较长总等待时间(TWT)对患者满意度有显著不利影响。我们的目标是对患者排班日历进行大数据模拟,并研究其对普通眼科门诊TWT的影响。基于模拟结果,我们对日历进行了调整,并在临床实践中验证了这些调整对TWT的影响。

设计与方法

对于这项回顾性模拟研究,我们基于对本诊所4401次就诊的临床时间点生成了一个离散事件模拟(DES)模型。所有数据点均从我们的临床数据库导出以进行进一步处理。如果电子健康记录中没有相关数据,则使用对该过程的手动时间测量。基于各种患者排班模型对TWT的减少情况进行模拟和评估。最有前景的模型于2017年应用于临床实践。

结果

在对我们的模拟模型进行验证期间,我们发现实际数据(229±100分钟)与相应模拟数据(225±112分钟)之间的平均TWT高度一致。这表明模拟模型的质量很高。模拟之后,引入了一种患者排班日历,与旧日历相比,它为患者提供了时间段和延长的时间窗口。该模型的模拟TWT为153分钟。在临床实践中实施后,我们普通眼科门诊每位患者的TWT已从229±100分钟减少至183±89分钟。

结论

通过实施大数据模拟模型,我们在成本不变的情况下将平均TWT降低了21%。大数据模拟使用户能够在将现有系统变更应用于临床实践之前对其进行评估。可以经济高效地评估各种改善患者流程或减轻容量负荷的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7559/8102441/eeb80e559d70/417_2020_5040_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验