Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 550000, Vietnam; The Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Da Nang, 550000, Vietnam.
Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar.
Food Chem Toxicol. 2021 Feb;148:111964. doi: 10.1016/j.fct.2020.111964. Epub 2021 Jan 1.
Due to its unique properties, graphene has emerged as a promising green nanomaterial for many applications. The porous structure and wetting characteristics of graphene make it an excellent and promising nanomaterial for water desalination (WD) and purification. The present work presents a systematic review and performs a meta-analysis on the application of graphene-based nanomaterial for WD. The reported results encourage expanding the use of different types of graphene-based nanomaterial in WD and thus fill the knowledge gaps in finding a comprehensive, simple, and cost-effective application of nanomaterial in WD. The meta-analysis showed that the cheap and simple graphene-based nanomaterial have an effective salt rejection efficiency (%SAR) in the range 83.04 (79.95-96.13); besides, the %SAR for meta-analysis on various desalination techniques is 99.8% (pervaporation), 55% (adsorption), and 100% (distillation). Nonetheless, the present literature review concluded that more focused research works are required: i) to investigate and evaluate the optimal operating conditions, the impact of environmental hazards, techno-economic analysis of the process and ii) to evaluate the probable nano-toxicity that occurs due to the accidental release of nanomaterials.
由于其独特的性质,石墨烯已成为许多应用的一种有前途的绿色纳米材料。石墨烯的多孔结构和润湿性使其成为水淡化 (WD) 和净化的优秀且有前途的纳米材料。本工作对基于石墨烯的纳米材料在 WD 中的应用进行了系统的综述和荟萃分析。报告的结果鼓励扩大使用不同类型的基于石墨烯的纳米材料在 WD 中的应用,从而填补在寻找纳米材料在 WD 中的综合、简单和具有成本效益的应用方面的知识空白。荟萃分析表明,廉价且简单的基于石墨烯的纳米材料具有 83.04%(79.95-96.13)范围内的有效盐排斥效率 (%SAR);此外,各种海水淡化技术的 %SAR 为 99.8%(渗透蒸发)、55%(吸附)和 100%(蒸馏)。尽管如此,本文献综述得出的结论是,需要进行更有针对性的研究工作:i)研究和评估最佳操作条件、环境危害的影响、该工艺的技术经济分析以及 ii)评估由于纳米材料的意外释放而可能发生的潜在纳米毒性。