Benedetti Irene, Obukhovskii Valeri, Taddei Valentina
Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, 06123 Perugia, Italy.
Faculty of Physics and Mathematics, Voronezh State Pedagogical University, 394 043 Voronezh, Russia.
Philos Trans A Math Phys Eng Sci. 2021 Feb 22;379(2191):20190384. doi: 10.1098/rsta.2019.0384. Epub 2021 Jan 4.
We prove the existence of at least one integrated solution to an impulsive Cauchy problem for an integro-differential inclusion in a Banach space with a non-densely defined operator. Since we look for integrated solution we do not need to assume that is a Hille Yosida operator. We exploit a technique based on the measure of weak non-compactness which allows us to avoid any hypotheses of compactness both on the semigroup generated by the linear part and on the nonlinear term. As the main tool in the proof of our existence result, we are using the Glicksberg-Ky Fan theorem on a fixed point for a multivalued map on a compact convex subset of a locally convex topological vector space. This article is part of the theme issue 'Topological degree and fixed point theories in differential and difference equations'.
我们证明了在具有非稠定算子的巴拿赫空间中,一个积分 - 微分包含的脉冲柯西问题至少存在一个积分解。由于我们寻求积分解,所以无需假设 是希勒 - 约斯达算子。我们利用基于弱非紧性测度的技术,这使我们能够避免对线性部分生成的半群以及非线性项提出任何紧性假设。作为我们存在性结果证明中的主要工具,我们使用了关于局部凸拓扑向量空间的紧凸子集上多值映射的不动点的格利克斯伯格 - 季樊定理。本文是“微分和差分方程中的拓扑度和不动点理论”主题问题的一部分。