Gallo-Franco Jenny Johana, Sosa Chrystian Camilo, Ghneim-Herrera Thaura, Quimbaya Mauricio
Departamento de Ciencias Naturales y Matemáticas, Pontificia Universidad Javeriana, Cali, Cali, Colombia.
Grupo de Investigación en Evolución, Ecología y Conservación EECO, Programa de Biología, Facultad de Ciencias Básicas y Tecnologías, Universidad del Quindío, Armenia, Colombia.
Front Plant Sci. 2020 Dec 16;11:602625. doi: 10.3389/fpls.2020.602625. eCollection 2020.
High concentrations of heavy metal (HM) ions impact agronomic staple crop production in acid soils (pH ≤ 5) due to their cytotoxic, genotoxic, and mutagenic effects. Among cytotoxic ions, the trivalent aluminum cation (Al) formed by solubilization of aluminum (Al) into acid soils, is one of the most abundant and toxic elements under acidic conditions. In recent years, several studies have elucidated the different signal transduction pathways involved in HM responses, identifying complementary genetic mechanisms conferring tolerance to plants. Although epigenetics has become more relevant in abiotic stress studies, epigenetic mechanisms underlying plant responses to HM stress remain poorly understood. This review describes the main epigenetic mechanisms related to crop responses during stress conditions, specifically, the molecular evidence showing how epigenetics is at the core of plant adaptation responses to HM ions. We highlight the epigenetic mechanisms that induce Al tolerance. Likewise, we analyze the pivotal relationship between epigenetic and genetic factors associated with HM tolerance. Finally, using rice as a study case, we performed a general analysis over previously whole-genome bisulfite-seq published data. Specific genes related to Al tolerance, measured in contrasting tolerant and susceptible rice varieties, exhibited differences in DNA methylation frequency. The differential methylation patterns could be associated with epigenetic regulation of rice responses to Al stress, highlighting the major role of epigenetics over specific abiotic stress responses.
高浓度重金属(HM)离子因其细胞毒性、基因毒性和诱变作用,会影响酸性土壤(pH≤5)中主要农作物的产量。在具有细胞毒性的离子中,铝(Al)溶解于酸性土壤中形成的三价铝阳离子(Al³⁺)是酸性条件下含量最丰富且毒性最强的元素之一。近年来,多项研究阐明了参与重金属响应的不同信号转导途径,确定了赋予植物耐受性的互补遗传机制。尽管表观遗传学在非生物胁迫研究中变得愈发重要,但植物对重金属胁迫响应的表观遗传机制仍知之甚少。本综述描述了与胁迫条件下作物响应相关的主要表观遗传机制,特别是分子证据表明表观遗传学是植物对重金属离子适应响应的核心。我们着重介绍了诱导铝耐受性的表观遗传机制。同样,我们分析了与重金属耐受性相关的表观遗传和遗传因素之间的关键关系。最后,以水稻为研究案例,我们对先前发表的全基因组亚硫酸氢盐测序数据进行了综合分析。在耐铝和铝敏感水稻品种中检测到的与铝耐受性相关的特定基因,其DNA甲基化频率存在差异。这种差异甲基化模式可能与水稻对铝胁迫响应的表观遗传调控有关,突出了表观遗传学在特定非生物胁迫响应中的重要作用。