青少年特发性脊柱侧弯:差异生长的力学生物学
Adolescent idiopathic scoliosis: The mechanobiology of differential growth.
作者信息
Smit Theodoor H
机构信息
Department of Orthopaedic Surgery Amsterdam Movement Sciences, Amsterdam University Medical Centres Amsterdam Netherlands.
Department of Medical Biology Amsterdam University Medical Centres Amsterdam Netherlands.
出版信息
JOR Spine. 2020 Jul 24;3(4):e1115. doi: 10.1002/jsp2.1115. eCollection 2020 Dec.
Adolescent idiopathic scoliosis (AIS) has been linked to neurological, genetic, hormonal, microbial, and environmental cues. Physically, however, AIS is a structural deformation, hence an adequate theory of etiology must provide an explanation for the forces involved. Earlier, we proposed differential growth as a possible mechanism for the slow, three-dimensional deformations observed in AIS. In the current perspective paper, the underlying mechanobiology of cells and tissues is explored. The musculoskeletal system is presented as a tensegrity-like structure, in which the skeletal compressive elements are stabilized by tensile muscles, ligaments, and fasciae. The upright posture of the human spine requires minimal muscular energy, resulting in less compression, and stability than in quadrupeds. Following Hueter-Volkmann Law, less compression allows for faster growth of vertebrae and intervertebral discs. The substantially larger intervertebral disc height observed in AIS patients suggests high intradiscal pressure, a condition favorable for notochordal cells; this promotes the production of proteoglycans and thereby osmotic pressure. Intradiscal pressure overstrains annulus fibrosus and longitudinal ligaments, which are then no longer able to remodel and grow, and consequently induce differential growth. Intradiscal pressure thus is proposed as the driver of AIS and may therefore be a promising target for prevention and treatment.
青少年特发性脊柱侧凸(AIS)与神经、遗传、激素、微生物和环境因素有关。然而,从物理角度来看,AIS是一种结构变形,因此,一个充分的病因学理论必须对其中涉及的力作出解释。此前,我们提出差异生长是AIS中观察到的缓慢三维变形的一种可能机制。在本篇观点论文中,我们探讨了细胞和组织潜在的力学生物学原理。肌肉骨骼系统呈现为一种类张拉整体结构,其中骨骼的压缩元件由拉伸的肌肉、韧带和筋膜稳定。人类脊柱的直立姿势所需的肌肉能量最少,与四足动物相比,其受到的压缩和稳定性更小。根据胡特尔 - 福尔克曼定律,较小的压缩力可使椎骨和椎间盘生长更快。在AIS患者中观察到的椎间盘高度显著更大,这表明椎间盘内压力较高,这种情况有利于脊索细胞;这会促进蛋白聚糖的产生,从而增加渗透压。椎间盘内压力使纤维环和纵韧带过度紧张,使其不再能够重塑和生长,进而导致差异生长。因此,椎间盘内压力被认为是AIS的驱动因素,可能因此成为预防和治疗的一个有前景的靶点。
相似文献
JOR Spine. 2020-7-24
Eur Spine J. 2024-6
Comput Methods Biomech Biomed Engin. 2020-8
Comput Methods Biomech Biomed Engin. 2023-1
引用本文的文献
J Pediatr Soc North Am. 2024-4-10
Quant Imaging Med Surg. 2025-2-1
BMC Musculoskelet Disord. 2024-10-31
Int J Environ Res Public Health. 2023-1-25
本文引用的文献
Asian Spine J. 2019-6
J Spine Surg. 2018-12
Biomed Res Int. 2018-7-16
Biochem Biophys Res Commun. 2018-7-4
Bone Joint J. 2018-4-1