Suppr超能文献

乳腺密度测量与乳腺癌“内在”分子亚型的相关性。

Association of mammographic density measures and breast cancer "intrinsic" molecular subtypes.

机构信息

School of Public Health, University of Haifa, Haifa, Israel.

Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA.

出版信息

Breast Cancer Res Treat. 2021 May;187(1):215-224. doi: 10.1007/s10549-020-06049-8. Epub 2021 Jan 4.

Abstract

PURPOSE

We evaluated the association of percent mammographic density (PMD), absolute dense area (DA), and non-dense area (NDA) with risk of "intrinsic" molecular breast cancer (BC) subtypes.

METHODS

We pooled 3492 invasive BC and 10,148 controls across six studies with density measures from prediagnostic, digitized film-screen mammograms. We classified BC tumors into subtypes [63% Luminal A, 21% Luminal B, 5% HER2 expressing, and 11% as triple negative (TN)] using information on estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), and tumor grade. We used polytomous logistic regression to calculate odds ratio (OR) and 95% confidence intervals (CI) for density measures (per SD) across the subtypes compared to controls, adjusting for age, body mass index and study, and examined differences by age group.

RESULTS

All density measures were similarly associated with BC risk across subtypes. Significant interaction of PMD by age (P = 0.001) was observed for Luminal A tumors, with stronger effect sizes seen for younger women < 45 years (OR = 1.69 per SD PMD) relative to women of older ages (OR = 1.53, ages 65-74, OR = 1.44 ages 75 +). Similar but opposite trends were seen for NDA by age for risk of Luminal A: risk for women: < 45 years (OR = 0.71 per SD NDA) was lower than older women (OR = 0.83 and OR = 0.84 for ages 65-74 and 75 + , respectively) (P < 0.001). Although not significant, similar patterns of associations were seen by age for TN cancers.

CONCLUSIONS

Mammographic density measures were associated with risk of all "intrinsic" molecular subtypes. However, findings of significant interactions between age and density measures may have implications for subtype-specific risk models.

摘要

目的

我们评估了百分比乳腺密度(PMD)、绝对致密区(DA)和非致密区(NDA)与“内在”分子乳腺癌(BC)亚型风险的关联。

方法

我们汇集了六项研究中 3492 例浸润性 BC 和 10148 例对照,这些研究均使用数字化胶片筛查乳房 X 光片的密度测量值。我们使用雌激素受体(ER)、孕激素受体(PR)、人表皮生长因子受体 2(HER2)和肿瘤分级的信息,将 BC 肿瘤分为亚型[63%为 Luminal A、21%为 Luminal B、5%为 HER2 表达、11%为三阴性(TN)]。我们使用多变量逻辑回归计算了与对照相比,各密度指标(每标准差)在各亚型中的比值比(OR)和 95%置信区间(CI),并调整了年龄、体重指数和研究因素,同时还检查了不同年龄组之间的差异。

结果

所有密度指标与各亚型的 BC 风险均具有相似的相关性。PMD 与年龄的交互作用具有显著性(P=0.001),在 Luminal A 肿瘤中更为明显,对于年龄较小的女性(<45 岁),PMD 每标准差的效应大小较大(OR=1.69),而年龄较大的女性(OR=1.53,年龄为 65-74 岁;OR=1.44,年龄为 75 岁及以上)则较小。对于 Luminal A 肿瘤,NDA 与年龄的交互作用具有相似但相反的趋势:对于年龄较小的女性(<45 岁),NDA 每标准差的风险(OR=0.71)低于年龄较大的女性(OR=0.83 和 OR=0.84,年龄为 65-74 岁和 75 岁及以上)(P<0.001)。尽管不具有显著性,但对于 TN 癌症,年龄与各密度指标之间也存在类似的关联模式。

结论

乳腺密度测量值与所有“内在”分子亚型的风险相关。然而,年龄与密度指标之间存在显著交互作用的发现可能对特定亚型的风险模型具有影响。

相似文献

1
Association of mammographic density measures and breast cancer "intrinsic" molecular subtypes.
Breast Cancer Res Treat. 2021 May;187(1):215-224. doi: 10.1007/s10549-020-06049-8. Epub 2021 Jan 4.
2
Dense and nondense mammographic area and risk of breast cancer by age and tumor characteristics.
Cancer Epidemiol Biomarkers Prev. 2015 May;24(5):798-809. doi: 10.1158/1055-9965.EPI-14-1136. Epub 2015 Feb 25.
4
Association between mammographic density and tumor marker-defined breast cancer subtypes: a case-control study.
Eur J Cancer Prev. 2018 May;27(3):239-247. doi: 10.1097/CEJ.0000000000000353.
5
Mammographic density and risk of breast cancer by age and tumor characteristics.
Breast Cancer Res. 2013 Nov 4;15(6):R104. doi: 10.1186/bcr3570.
8
Mammographic density in relation to tumor biomarkers, molecular subtypes, and mode of detection in breast cancer.
Cancer Causes Control. 2015 Jun;26(6):931-9. doi: 10.1007/s10552-015-0576-6. Epub 2015 Apr 10.
9
Is there a difference in the association between percent mammographic density and subtypes of breast cancer? Luminal A and triple-negative breast cancer.
Cancer Epidemiol Biomarkers Prev. 2009 Feb;18(2):479-85. doi: 10.1158/1055-9965.EPI-08-0805. Epub 2009 Feb 3.
10
Tumor characteristics and family history in relation to mammographic density and breast cancer: The French E3N cohort.
Cancer Epidemiol. 2017 Aug;49:156-160. doi: 10.1016/j.canep.2017.07.003. Epub 2017 Jul 8.

引用本文的文献

1
Causal Effects of Breast Cancer Risk Factors across Hormone Receptor Breast Cancer Subtypes: A Two-Sample Mendelian Randomization Study.
Cancer Epidemiol Biomarkers Prev. 2025 Jun 3;34(6):933-943. doi: 10.1158/1055-9965.EPI-24-1440.
2
Mammographic density and breast cancer risk among Black American women.
Int J Cancer. 2025 Mar 15;156(6):1173-1180. doi: 10.1002/ijc.35223. Epub 2024 Oct 19.
3
Mammographic density mediates the protective effect of early-life body size on breast cancer risk.
Nat Commun. 2024 May 13;15(1):4021. doi: 10.1038/s41467-024-48105-7.
4
The unique risk factor profile of triple-negative breast cancer: a comprehensive meta-analysis.
J Natl Cancer Inst. 2024 Aug 1;116(8):1210-1219. doi: 10.1093/jnci/djae056.
6
Correlation of Breast Density Grade on Mammogram With Diagnosed Breast Cancer: A Retrospective Cross-Sectional Study.
Cureus. 2022 Jul 19;14(7):e27028. doi: 10.7759/cureus.27028. eCollection 2022 Jul.
7
Relationship of established risk factors with breast cancer subtypes.
Cancer Med. 2021 Sep;10(18):6456-6467. doi: 10.1002/cam4.4158. Epub 2021 Aug 31.
8
Risk factors for breast cancer subtypes among Black women undergoing screening mammography.
Breast Cancer Res Treat. 2021 Oct;189(3):827-835. doi: 10.1007/s10549-021-06340-2. Epub 2021 Aug 3.

本文引用的文献

1
The impact of selected risk factors among breast cancer molecular subtypes: a case-only study.
Breast Cancer Res Treat. 2020 Nov;184(1):213-220. doi: 10.1007/s10549-020-05820-1. Epub 2020 Aug 26.
2
Risk Models for Breast Cancer and Their Validation.
Stat Sci. 2020 Mar 3;35(1):14-30. doi: 10.1214/19-STS729.
3
Mammographic density parameters and breast cancer tumor characteristics among postmenopausal women.
Breast Cancer (Dove Med Press). 2019 Aug 16;11:261-271. doi: 10.2147/BCTT.S192766. eCollection 2019.
4
Associations between mammographic density and tumor characteristics in Chinese women with breast cancer.
Breast Cancer Res Treat. 2019 Sep;177(2):527-536. doi: 10.1007/s10549-019-05325-6. Epub 2019 Jun 28.
5
Body mass index, mammographic density, and breast cancer risk by estrogen receptor subtype.
Breast Cancer Res. 2019 Apr 3;21(1):48. doi: 10.1186/s13058-019-1129-9.
6
BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors.
Genet Med. 2019 Aug;21(8):1708-1718. doi: 10.1038/s41436-018-0406-9. Epub 2019 Jan 15.
7
MicroRNA in diagnosis and therapy monitoring of early-stage triple-negative breast cancer.
Sci Rep. 2018 Aug 2;8(1):11584. doi: 10.1038/s41598-018-29917-2.
8
Long-term Accuracy of Breast Cancer Risk Assessment Combining Classic Risk Factors and Breast Density.
JAMA Oncol. 2018 Sep 1;4(9):e180174. doi: 10.1001/jamaoncol.2018.0174. Epub 2018 Sep 13.
9
Mammographic Breast Density and Breast Cancer Molecular Subtypes: The Kenyan-African Aspect.
Biomed Res Int. 2018 Jan 22;2018:6026315. doi: 10.1155/2018/6026315. eCollection 2018.
10
Mammographic density and risk of breast cancer by tumor characteristics: a case-control study.
BMC Cancer. 2017 Dec 16;17(1):859. doi: 10.1186/s12885-017-3871-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验