Suppr超能文献

分析具有零膨胀的纵向聚类计数数据:使用 Conway-Maxwell-Poisson 分布进行边缘建模。

Analyzing longitudinal clustered count data with zero inflation: Marginal modeling using the Conway-Maxwell-Poisson distribution.

机构信息

Department of Biostatistics, University of Florida, Gainesville, FL, USA.

Department of Preventive and Community Dentistry, University of Iowa, Iowa City, IA, USA.

出版信息

Biom J. 2021 Apr;63(4):761-786. doi: 10.1002/bimj.202000061. Epub 2021 Jan 4.

Abstract

Biological and medical researchers often collect count data in clusters at multiple time points. The data can exhibit excessive zeros and a wide range of dispersion levels. In particular, our research was motivated by a dental dataset with such complex data features: the Iowa Fluoride Study (IFS). The study was designed to investigate the effects of various dietary and nondietary factors on the caries development of a cohort of Iowa school children at the ages of 5, 9, and 13. To analyze the multiyear IFS data, we propose a novel longitudinal method of a generalized estimating equations based marginal regression model. We use a zero-inflated model with a Conway-Maxwell-Poisson (CMP) distribution, which has the flexibility to account for all levels of dispersion. The parameters of interest are estimated through a modified expectation-solution algorithm to account for the clustered and temporal correlation structure. We fit the proposed zero-inflated CMP model and perform a comprehensive secondary analysis of the IFS dataset. It resulted in a number of notable conclusions that also make clinical sense. Additionally, we demonstrated the superiority of this modeling approach over two other popular competing models: the zero-inflated Poisson and negative binomial models. In the simulation studies, we further evaluate the performance of our point estimators, the variance estimators, and that of the large sample confidence intervals for the parameters of interest. It is also demonstrated that our longitudinal CMP model can correctly identify the time-varying dispersion patterns.

摘要

生物医学研究人员经常在多个时间点以群组的形式收集计数数据。这些数据可能存在大量零值和广泛的离散程度。特别是,我们的研究受到了一个具有复杂数据特征的牙科数据集的启发:爱荷华州氟化物研究(IFS)。该研究旨在调查各种饮食和非饮食因素对爱荷华州一群学童龋齿发展的影响,这些儿童的年龄分别为 5 岁、9 岁和 13 岁。为了分析多年的 IFS 数据,我们提出了一种基于广义估计方程的边际回归模型的新纵向方法。我们使用零膨胀模型与 Conway-Maxwell-Poisson(CMP)分布相结合,该模型具有灵活性,可以考虑所有离散水平。通过修正的期望解算法来估计感兴趣的参数,以考虑聚类和时间相关性结构。我们拟合了提出的零膨胀 CMP 模型,并对 IFS 数据集进行了全面的二次分析。结果得出了一些有意义的结论,也具有临床意义。此外,我们还证明了这种建模方法优于另外两种流行的竞争模型:零膨胀泊松模型和负二项式模型。在模拟研究中,我们进一步评估了我们的点估计量、方差估计量以及感兴趣参数的大样本置信区间的性能。还证明了我们的纵向 CMP 模型可以正确识别随时间变化的离散模式。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验