Zimmermann Philipp, Kilpatrick Alexander F R, Ar Deniz, Demeshko Serhiy, Cula Beatrice, Limberg Christian
Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
Universität Göttingen, Institut für Anorganische Chemie, Tammannstr. 4, D-37077 Göttingen, Germany.
Chem Commun (Camb). 2021 Jan 28;57(7):875-878. doi: 10.1039/d0cc06983c.
Reduction of β-diketiminato nickel(ii) complexes (LtBuNiII) to the corresponding nickel(i) compounds does not require alkali metal compounds but can also be performed with the milder cobaltocenes. LtBuNiBr and Cp2Co have rather similar redox potentials, so that the equilibrium with the corresponding electron transfer compound [LtBuNiIBr][Cp2CoIII] (ETC) clearly lies on the side of the starting materials. Still, the ETC portion can be used to activate CO2 yielding a mononuclear nickel(ii) carbonate complex and ETC can be isolated almost quantitatively from the solutions through crystallisation. The more negative reduction potential of Cp*2Co shifts the equilibrium formed with LtBuNiBr strongly towards the ETC and accordingly the reaction of such solutions with CO2 is much faster.
将β-二酮亚胺镍(II)配合物(LtBuNiII)还原为相应的镍(I)化合物不需要碱金属化合物,也可以用较温和的二茂钴来进行。LtBuNiBr和Cp2Co具有相当相似的氧化还原电位,因此与相应的电子转移化合物[LtBuNiIBr][Cp2CoIII](ETC)的平衡明显偏向起始原料一侧。尽管如此,ETC部分可用于活化CO2生成单核镍(II)碳酸酯配合物,并且ETC几乎可以通过结晶从溶液中定量分离出来。Cp*2Co更负的还原电位使与LtBuNiBr形成的平衡强烈地向ETC方向移动,因此这种溶液与CO2的反应要快得多。