Yuwono Jodie A, Burr Patrick, Galvin Conor, Lennon Alison
School of Photovoltaic and Renewable Energy Engineering, UNSW Sydney, Kensington, Sydney, New South Wales 2052, Australia.
School of Mechanical and Manufacturing Engineering, UNSW Sydney, Kensington, Sydney, New South Wales 2052, Australia.
ACS Appl Mater Interfaces. 2021 Jan 13;13(1):1791-1806. doi: 10.1021/acsami.0c17097. Epub 2021 Jan 4.
Density functional theory calculations were used to investigate the phase transformations of LiTiO (at 0 ≤ ≤ 1), solid-state Li diffusion, and interfacial charge-transfer reactions in both crystalline and amorphous forms of TiO. It is shown that in contrast to crystalline TiO polymorphs, the energy barrier to Li diffusion in amorphous TiO decreases with increasing mole fraction of Li due to the changes of chemical species pair interactions following the progressive filling of low-energy Li trapping sites. Sites with longer Li-Ti and Li-O interactions exhibit lower Li insertion energies and higher migration energy barriers. Due to its disordered atomic arrangement and increasing Li diffusivity at higher mole fractions, amorphous TiO exhibits both surface and bulk storage mechanisms. The results suggest that nanostructuring of crystalline TiO can increase both the rate and capacity because the capacity dependence on the bulk storage mechanism is minimized and replaced with the surface storage mechanism. These insights into Li storage mechanisms in different forms of TiO can guide the fabrication of TiO electrodes to maximize the capacity and rate performance in the future.
采用密度泛函理论计算方法研究了LiTiO(0≤≤1)的相变、固态Li扩散以及TiO晶体和非晶态形式中的界面电荷转移反应。结果表明,与结晶TiO多晶型物相比,非晶态TiO中Li扩散的能垒随着Li摩尔分数的增加而降低,这是由于随着低能量Li捕获位点的逐渐填充,化学物种对相互作用发生了变化。具有较长Li-Ti和Li-O相互作用的位点表现出较低的Li嵌入能量和较高的迁移能垒。由于其无序的原子排列以及在较高摩尔分数下Li扩散率的增加,非晶态TiO表现出表面和体相存储机制。结果表明,结晶TiO的纳米结构化可以提高速率和容量,因为对体相存储机制的容量依赖性最小化,并被表面存储机制所取代。这些对不同形式TiO中Li存储机制的见解可以指导TiO电极的制备,以在未来最大化容量和速率性能。