Suppr超能文献

基于随机森林的药物性横纹肌溶解症严重程度预测的定量构效关系模型

Quantitative Structure-Activity Relationship (QSAR) Model for the Severity Prediction of Drug-Induced Rhabdomyolysis by Using Random Forest.

机构信息

College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.

College of Computer Science, Sichuan University, Chengdu, Sichuan 610064, China.

出版信息

Chem Res Toxicol. 2021 Feb 15;34(2):514-521. doi: 10.1021/acs.chemrestox.0c00347. Epub 2021 Jan 4.

Abstract

Drug-induced rhabdomyolysis (DIR) is a rare and potentially life-threatening muscle injury that is characterized by low incidence and high risk. To our best knowledge, the performance of the current predictive models for the early detection of DIR is suboptimal because of the scarcity and dispersion of DIR cases. Therefore, on the basis of the curated drug information from the Drug-Induced Rhabdomyolysis Atlas (DIRA) database, we proposed a random forest (RF) model to predict the DIR severity of the marketed drugs. Compared with the state-of-art methods, our proposed model outperformed extreme gradient boosting, support vector machine, and logistic regression in distinguishing the Most-DIR concern drugs from the No-DIR concern drugs (Matthews correlation coefficient (MCC) and recall rate of our model were 0.46 and 0.81, respectively). Our model was subsequently applied to predicting the potentially serious DIR for 1402 drugs, which were reported to cause DIR by the postmarketing DIR surveillance data in the FDA Spontaneous Adverse Events Reporting System (FAERS). As a result, 62.7% (94) of drugs ranked in the top 150 drugs with the Most-DIR concerns in FAERS can be identified by our model. The top four drugs (odds ratio >30) including acepromazine, rapacuronium, oxyphenbutazone, and naringenin were correctly predicted by our model. In conclusion, the RF model can well predict the Most-DIR concern drug only based on the chemical structure information and can be a facilitated tool for early DIR detection.

摘要

药物诱导的横纹肌溶解症(DIR)是一种罕见且潜在危及生命的肌肉损伤,其发病率低但风险高。据我们所知,由于 DIR 病例的稀缺性和分散性,目前用于早期检测 DIR 的预测模型的性能并不理想。因此,基于 Drug-Induced Rhabdomyolysis Atlas(DIRA)数据库中经过整理的药物信息,我们提出了一个随机森林(RF)模型,用于预测已上市药物的 DIR 严重程度。与最先进的方法相比,我们提出的模型在区分最关注 DIR 的药物和不关注 DIR 的药物方面优于极端梯度提升、支持向量机和逻辑回归(我们模型的马修斯相关系数(MCC)和召回率分别为 0.46 和 0.81)。我们的模型随后应用于预测 1402 种药物的潜在严重 DIR,这些药物在 FDA 自发不良事件报告系统(FAERS)中的上市后 DIR 监测数据中被报告为导致 DIR。结果,我们的模型可以识别出 FAERS 中最关注 DIR 的前 150 种药物中的 62.7%(94 种)。我们的模型正确预测了排名前四的药物(比值比>30),包括乙酰丙嗪、瑞库溴铵、氧苯丁酸和柚皮苷。总之,RF 模型仅基于化学结构信息就能很好地预测最关注 DIR 的药物,可作为早期 DIR 检测的辅助工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验