Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.
National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba 305-8568, Japan.
J Phys Chem A. 2021 Jan 14;125(1):154-164. doi: 10.1021/acs.jpca.0c08961. Epub 2021 Jan 4.
Computational quantum chemistry provides fundamental chemical and physical insights into solvated reaction mechanisms across many areas of chemistry, especially in homogeneous and heterogeneous renewable energy catalysis. Such reactions may depend on explicit interactions with ions and solvent molecules that are nontrivial to characterize. Rigorously modeling explicit solvent effects with molecular dynamics usually brings steep computational costs while the performance of continuum solvent models such as polarizable continuum model (PCM), charge-asymmetric nonlocally determined local-electric (CANDLE), conductor-like screening model for real solvents (COSMO-RS), and effective screening medium method with the reference interaction site model (ESM-RISM) are less well understood for reaction mechanisms. Here, we revisit a fundamental aqueous hydride transfer reaction-carbon dioxide (CO) reduction by sodium borohydride (NaBH)-as a test case to evaluate how different solvent models perform in aqueous phase charge migrations that would be relevant to renewable energy catalysis mechanisms. For this system, quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations almost exactly reproduced energy profiles from QM simulations, and the Na counterion in the QM/MM simulations plays an insignificant role over ensemble averaged trajectories that describe the reaction pathway. However, solvent models used on static calculations gave much more variability in data depending on whether the system was modeled using explicit solvent shells and/or the counterion. We pinpoint this variability due to unphysical descriptions of charge-separated states in the gas phase (i.e., self-interaction errors), and we show that using more accurate hybrid functionals and/or explicit solvent shells lessens these errors. This work closes with recommended procedures for treating solvation in future computational efforts in studying renewable energy catalysis mechanisms.
计算量子化学为许多化学领域(特别是均相和多相可再生能源催化)的溶剂化反应机制提供了基本的化学和物理见解。这些反应可能取决于与离子和溶剂分子的明确相互作用,而这些相互作用的特征描述具有一定难度。使用分子动力学严格模拟显式溶剂效应通常会带来巨大的计算成本,而诸如极化连续体模型(PCM)、电荷不对称非局部确定局部电场(CANDLE)、真实溶剂的导体屏蔽模型(COSMO-RS)和参考相互作用位点模型的有效屏蔽介质方法(ESM-RISM)等连续体溶剂模型对于反应机制的性能则理解得较少。在这里,我们重新审视了一个基本的水合氢转移反应——硼氢化钠(NaBH)还原二氧化碳(CO)——作为一个测试案例,以评估不同溶剂模型在与可再生能源催化机制相关的水溶液电荷迁移中的表现。对于该体系,量子力学/分子力学(QM/MM)分子动力学模拟几乎完全再现了 QM 模拟的能量曲线,并且在描述反应途径的系综平均轨迹上,QM/MM 模拟中的钠离子(Na+)反离子的作用微不足道。然而,在静态计算中使用的溶剂模型会根据系统是否使用显式溶剂壳和/或反离子而导致数据的可变性更大。我们指出这种可变性是由于气相中电荷分离态的非物理描述(即自相互作用误差)引起的,并表明使用更准确的混合泛函和/或显式溶剂壳可以减少这些误差。这项工作以在研究可再生能源催化机制的未来计算工作中处理溶剂化的推荐程序结束。