Suppr超能文献

生物正交共轭纳米颗粒在代谢工程化间充质干细胞上的细胞内摄取机制

Intracellular Uptake Mechanism of Bioorthogonally Conjugated Nanoparticles on Metabolically Engineered Mesenchymal Stem Cells.

作者信息

Lim Seungho, Kim Woojun, Song Sukyung, Shim Man Kyu, Yoon Hong Yeol, Kim Byung-Soo, Kwon Ick Chan, Kim Kwangmeyung

机构信息

School of Chemical and Biological Engineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.

Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.

出版信息

Bioconjug Chem. 2021 Jan 20;32(1):199-214. doi: 10.1021/acs.bioconjchem.0c00640. Epub 2021 Jan 4.

Abstract

Nanoparticles have been used for effectively delivering imaging agents and therapeutic drugs into stem cells. However, nanoparticles are not sufficiently internalized into stem cells; thus, new delivery method of nanoparticles into stem cells is urgently needed. Herein, we develop bicyclo[6.1.0]nonyne (BCN)-conjugated gold nanoparticles (BCN-AuNPs), which can be bioorthogonally conjugated to azide (-N) groups on the surface of metabolically engineered stem cells via bioorthogonal click chemistry. For incorporating azide groups on the cell surface, first, human adipose-derived mesenchymal stem cells (hMSCs) were metabolically engineered with N-azidoacetylmannosamine-tetraacylated (AcManNAz). Second, clickable BCN-AuNPs were bioorthogonally conjugated to azide groups on AcManNAz-treated hMSCs. Importantly, a large amount of BCN-AuNPs was specifically conjugated to metabolically engineered hMSCs and then internalized rapidly into stem cells through membrane turnover mechanism, compared to the conventional nanoparticle-derived endocytosis mechanism. Furthermore, BCN-AuNPs entrapped in endosomal/lysosomal compartment could escape efficiently to the cytoplasm of metabolically engineered stem cells. Finally, BCN-AuNPs in stem cells were very safe, and they did not affect stem cell functions, such as self-renewal and differentiation capacity. These bioorthogonally conjugated nanoparticles on metabolically engineered stem cells can enhance the cellular uptake of nanoparticles via bioorthogonal conjugation mechanism.

摘要

纳米颗粒已被用于有效地将成像剂和治疗药物递送至干细胞中。然而,纳米颗粒并未充分内化到干细胞中;因此,迫切需要将纳米颗粒递送至干细胞的新方法。在此,我们开发了双环[6.1.0]壬炔(BCN)共轭金纳米颗粒(BCN-AuNPs),其可通过生物正交点击化学与代谢工程改造的干细胞表面的叠氮化物(-N)基团进行生物正交共轭。为了在细胞表面引入叠氮基团,首先,用人N-叠氮乙酰甘露糖胺-四酰化(AcManNAz)对人脂肪来源的间充质干细胞(hMSCs)进行代谢工程改造。其次,将可点击的BCN-AuNPs与经AcManNAz处理的hMSCs表面的叠氮基团进行生物正交共轭。重要的是,与传统的纳米颗粒内吞机制相比,大量的BCN-AuNPs特异性地共轭到代谢工程改造的hMSCs上,然后通过膜周转机制迅速内化到干细胞中。此外,被困在内体/溶酶体区室中的BCN-AuNPs可以有效地逃逸到代谢工程改造的干细胞的细胞质中。最后,干细胞中的BCN-AuNPs非常安全,并且它们不影响干细胞的功能,如自我更新和分化能力。这些在代谢工程改造的干细胞上进行生物正交共轭的纳米颗粒可以通过生物正交共轭机制增强纳米颗粒的细胞摄取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验