Neurodegenerative Disease Research Group, 41062 Daegu, Republic of Korea.
Korea Brain Research Institute, 41062 Daegu, Republic of Korea.
Proc Natl Acad Sci U S A. 2021 Jan 19;118(3). doi: 10.1073/pnas.2011250118.
Exon splicing triggered by unpredicted genetic mutation can cause translational variations in neurodegenerative disorders. In this study, we discover Alzheimer's disease (AD)-specific single-nucleotide variants (SNVs) and abnormal exon splicing of phospholipase c gamma-1 () gene, using genome-wide association study (GWAS) and a deep learning-based exon splicing prediction tool. GWAS revealed that the identified single-nucleotide variations were mainly distributed in the H3K27ac-enriched region of gene body during brain development in an AD mouse model. A deep learning analysis, trained with human genome sequences, predicted 14 splicing sites in human gene, and one of these completely matched with an SNV in exon 27 of gene in an AD mouse model. In particular, the SNV in exon 27 of gene is associated with abnormal splicing during messenger RNA maturation. Taken together, our findings suggest that this approach, which combines in silico and deep learning-based analyses, has potential for identifying the clinical utility of critical SNVs in AD prediction.
外显子剪接触发未预测的基因突变可导致神经退行性疾病的翻译变化。在这项研究中,我们使用全基因组关联研究 (GWAS) 和基于深度学习的外显子剪接预测工具,发现了阿尔茨海默病 (AD) 特异性单核苷酸变异 (SNV) 和磷脂酶 c 伽马-1 () 基因的异常外显子剪接。GWAS 表明,在 AD 小鼠模型中,鉴定的单核苷酸变异主要分布在基因体中 H3K27ac 富集区域。经过人类基因组序列训练的深度学习分析预测了人类 基因的 14 个剪接位点,其中一个与 AD 小鼠模型中 基因外显子 27 中的 SNV 完全匹配。特别是,基因外显子 27 中的 SNV 与信使 RNA 成熟过程中的异常剪接有关。总之,我们的研究结果表明,这种结合了计算机模拟和基于深度学习的分析的方法,具有识别 AD 预测中关键 SNV 的临床应用潜力。