Lee Si Woo, Kim Jong Min, Park Woonghyeon, Lee Hyosun, Lee Gyu Rac, Jung Yousung, Jung Yeon Sik, Park Jeong Young
Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
Nat Commun. 2021 Jan 4;12(1):40. doi: 10.1038/s41467-020-20293-y.
Interaction between metal and oxides is an important molecular-level factor that influences the selectivity of a desirable reaction. Therefore, designing a heterogeneous catalyst where metal-oxide interfaces are well-formed is important for understanding selectivity and surface electronic excitation at the interface. Here, we utilized a nanoscale catalytic Schottky diode from Pt nanowire arrays on TiO that forms a nanoscale Pt-TiO interface to determine the influence of the metal-oxide interface on catalytic selectivity, thereby affecting hot electron excitation; this demonstrated the real-time detection of hot electron flow generated under an exothermic methanol oxidation reaction. The selectivity to methyl formate and hot electron generation was obtained on nanoscale Pt nanowires/TiO, which exhibited ~2 times higher partial oxidation selectivity and ~3 times higher chemicurrent yield compared to a diode based on Pt film. By utilizing various Pt/TiO nanostructures, we found that the ratio of interface to metal sites significantly affects the selectivity, thereby enhancing chemicurrent yield in methanol oxidation. Density function theory (DFT) calculations show that formation of the Pt-TiO interface showed that selectivity to methyl formate formation was much larger in Pt nanowire arrays than in Pt films because of the different reaction mechanism.
金属与氧化物之间的相互作用是影响理想反应选择性的一个重要分子水平因素。因此,设计一种金属-氧化物界面良好形成的多相催化剂对于理解界面处的选择性和表面电子激发至关重要。在此,我们利用了TiO上的Pt纳米线阵列构成的纳米级催化肖特基二极管,该二极管形成了纳米级Pt-TiO界面,以确定金属-氧化物界面对催化选择性的影响,从而影响热电子激发;这证明了在放热甲醇氧化反应下产生的热电子流的实时检测。在纳米级Pt纳米线/TiO上获得了对甲酸甲酯的选择性和热电子产生,与基于Pt薄膜的二极管相比,其部分氧化选择性高约2倍,化学电流产率高约3倍。通过利用各种Pt/TiO纳米结构,我们发现界面与金属位点的比例显著影响选择性,从而提高甲醇氧化中的化学电流产率。密度泛函理论(DFT)计算表明,Pt-TiO界面的形成表明,由于反应机理不同,Pt纳米线阵列中甲酸甲酯形成的选择性比Pt薄膜中要大得多。