Suppr超能文献

重新构想基于细胞的大型亲电体文库筛选中反应性半胱氨酸的高通量分析。

Reimagining high-throughput profiling of reactive cysteines for cell-based screening of large electrophile libraries.

机构信息

Department of Cell Biology, Harvard Medical School, Boston, MA, USA.

Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.

出版信息

Nat Biotechnol. 2021 May;39(5):630-641. doi: 10.1038/s41587-020-00778-3. Epub 2021 Jan 4.

Abstract

Current methods used for measuring amino acid side-chain reactivity lack the throughput needed to screen large chemical libraries for interactions across the proteome. Here we redesigned the workflow for activity-based protein profiling of reactive cysteine residues by using a smaller desthiobiotin-based probe, sample multiplexing, reduced protein starting amounts and software to boost data acquisition in real time on the mass spectrometer. Our method, streamlined cysteine activity-based protein profiling (SLC-ABPP), achieved a 42-fold improvement in sample throughput, corresponding to profiling library members at a depth of >8,000 reactive cysteine sites at 18 min per compound. We applied it to identify proteome-wide targets of covalent inhibitors to mutant Kirsten rat sarcoma (KRAS) and Bruton's tyrosine kinase (BTK). In addition, we created a resource of cysteine reactivity to 285 electrophiles in three human cell lines, which includes >20,000 cysteines from >6,000 proteins per line. The goal of proteome-wide profiling of cysteine reactivity across thousand-member libraries under several cellular contexts is now within reach.

摘要

目前用于测量氨基酸侧链反应性的方法缺乏用于筛选整个蛋白质组相互作用的大型化学文库所需的通量。在这里,我们通过使用更小的去硫生物素探针、样品多路复用、减少蛋白质起始量以及在质谱仪上实时增强数据采集的软件,重新设计了活性的基于蛋白质的反应性半胱氨酸残基分析的工作流程。我们的方法,简化的半胱氨酸活性的基于蛋白质的分析(SLC-ABPP),使样品通量提高了 42 倍,对应于每个化合物在 18 分钟内对 >8000 个反应性半胱氨酸位点进行深度分析。我们将其应用于鉴定突变的 Kirsten 大鼠肉瘤(KRAS)和 Bruton 的酪氨酸激酶(BTK)的共价抑制剂的蛋白质组范围内的靶标。此外,我们在三种人类细胞系中创建了针对 285 种亲电试剂的半胱氨酸反应性资源,其中每条线包含来自 >6000 种蛋白质的 >20000 个半胱氨酸。在几种细胞环境下,对千成员文库中的半胱氨酸反应性进行蛋白质组范围分析的目标现在已经触手可及。

相似文献

5
Applications of Reactive Cysteine Profiling.活性半胱氨酸分析的应用。
Curr Top Microbiol Immunol. 2019;420:375-417. doi: 10.1007/82_2018_120.
7
Covalent Inhibition by a Natural Product-Inspired Latent Electrophile.受天然产物启发的潜伏亲电试剂的共价抑制。
J Am Chem Soc. 2023 May 24;145(20):11097-11109. doi: 10.1021/jacs.3c00598. Epub 2023 May 15.
10
Improved Electrophile Design for Exquisite Covalent Molecule Selectivity.改进亲电试剂设计以实现精准共价分子选择性。
ACS Chem Biol. 2022 Jun 17;17(6):1440-1449. doi: 10.1021/acschembio.1c00980. Epub 2022 May 19.

引用本文的文献

2
Probing the proteome.探索蛋白质组。
Nat Biotechnol. 2025 Jul 1. doi: 10.1038/s41587-025-02737-2.
7
Covalent inhibition of Ubc13 impairs global protein synthesis.对Ubc13进行共价抑制会损害整体蛋白质合成。
iScience. 2025 Apr 28;28(6):112545. doi: 10.1016/j.isci.2025.112545. eCollection 2025 Jun 20.

本文引用的文献

6
Tunable Heteroaromatic Sulfones Enhance in-Cell Cysteine Profiling.可调谐杂芳烃砜增强细胞内半胱氨酸分析。
J Am Chem Soc. 2020 Jan 29;142(4):1801-1810. doi: 10.1021/jacs.9b08831. Epub 2020 Jan 13.
9
A probe for every protein.针对每种蛋白质的一种探针。
Nat Rev Drug Discov. 2019 Sep;18(10):733-736. doi: 10.1038/d41573-019-00159-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验