Elliott Corrine F, Fraser Kate E, Odom Susan A, Risko Chad
Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States.
Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40511, United States.
J Phys Chem A. 2021 Jan 14;125(1):272-278. doi: 10.1021/acs.jpca.0c09801. Epub 2021 Jan 5.
Synthetic chemists customarily tune the redox characteristics of π-conjugated molecules by introducing electron-donating or electron-withdrawing substituents onto the molecular core, or by modifying the length of the π-conjugated pathway. Any steric effects of such efforts on molecular geometry typically affect both the neutral and charged (oxidized or reduced) states indiscriminately. However, in electroactive systems that undergo significant conformational changes upon oxidation or reduction, we can leverage the steric and inductive effects of substitution to attain considerable control over individual redox potentials. Here, we make use of density functional theory to elucidate the interplay between electronic and geometric effects of peripheral substitution on the model system of phenothiazine. For instance, we introduce substituents at positions ortho to the nitrogen atom (positions 1 and 9) to induce steric strain in the radical-cation state without significant effect on the neutral molecule, thereby augmenting the overall ionization potential. Notably, this steric effect persists for electron-donating substituents; the resulting ionization potentials therefore deviate from outcomes foretold by Hammett constants. Moreover, the same procedure has limited effect on electron affinities because of differences in phenothiazines' relaxation process upon reduction compared to oxidation. Our results promote molecular design guidelines for manipulating redox potentials in classes of electroactive compounds that experience dramatic changes in geometry upon ionization.
合成化学家通常通过在分子核心引入供电子或吸电子取代基,或通过改变π共轭途径的长度来调节π共轭分子的氧化还原特性。这种操作对分子几何结构的任何空间效应通常会不加区分地影响中性和带电(氧化或还原)状态。然而,在氧化或还原时会发生显著构象变化的电活性体系中,我们可以利用取代的空间和诱导效应来对各个氧化还原电位进行相当程度的控制。在此,我们利用密度泛函理论来阐明吩噻嗪模型体系中外围取代的电子和几何效应之间的相互作用。例如,我们在氮原子的邻位(1位和9位)引入取代基,以在自由基阳离子状态下诱导空间应变,而对中性分子没有显著影响,从而提高整体电离电位。值得注意的是,这种空间效应对于供电子取代基持续存在;因此产生的电离电位偏离了哈米特常数所预测的结果。此外,由于吩噻嗪还原时的弛豫过程与氧化时不同,相同的操作对电子亲和力的影响有限。我们的结果为在电离时几何结构发生显著变化的电活性化合物类别中操纵氧化还原电位提供了分子设计指导原则。