Suppr超能文献

Centrifugal Detachment of Compound Droplets from Fibers.

作者信息

Holweger H J, Jamali M, Tafreshi H Vahedi

机构信息

Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia 23284-3015, United States.

Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695-7910, United States.

出版信息

Langmuir. 2021 Jan 19;37(2):928-938. doi: 10.1021/acs.langmuir.0c03317. Epub 2021 Jan 5.

Abstract

This article presents the first experimental-computational study on the centrifugal detachment of a compound droplet (e.g., a primary water droplet cloaked by an immiscible oil) from a fiber. The work was intended to establish a method for quantifying the force needed to detach compound droplets of different compositions from a fiber. More importantly, our study was aimed at improving the understanding of the interplay between interfacial and external forces acting on a compound droplet during forceful detachment. The experiments were conducted using DI water, for the primary droplet, and silicone or mineral oil, for the cloaking fluid. It was observed from the experiments that the silicone-oil-cloaked droplets behave differently from the mineral-oil-cloaked droplets. It was also observed that detachment force decreases with increasing the oil-to-water volume ratio. The simulations were performed using the Surface Evolver (SE) finite element code programmed for the complicated four-phase (air, water, oil, and solid) interfacial problem at hand. Our simulations revealed the evolution of the interfacial forces between the interacting phases under an increasing external body force on the droplet. The simulations also allowed us to define effective interfacial tensions and contact angles for detaching compound droplets, for the first time. Reasonable agreement was observed between the experimental measurements and computational results.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验