Suppr超能文献

基于福克-普朗克方程的肿瘤生长过程的最优最小方差-熵控制。

Optimal minimum variance-entropy control of tumour growth processes based on the Fokker-Planck equation.

机构信息

Faculty of Electrical Engineering, Shahid Beheshti University, Tehran, Iran.

Department of Physics, Materials Simulation Laboratory, Iran University of Science and Technology, Narmak, 16345 Tehran, Iran.

出版信息

IET Syst Biol. 2020 Dec;14(6):368-379. doi: 10.1049/iet-syb.2020.0055.

Abstract

The authors demonstrated an optimal stochastic control algorithm to obtain desirable cancer treatment based on the Gompertz model. Two external forces as two time-dependent functions are presented to manipulate the growth and death rates in the drift term of the Gompertz model. These input signals represent the effect of external treatment agents to decrease tumour growth rate and increase tumour death rate, respectively. Entropy and variance of cancerous cells are simultaneously controlled based on the Gompertz model. They have introduced a constrained optimisation problem whose cost function is the variance of a cancerous cells population. The defined entropy is based on the probability density function of affected cells was used as a constraint for the cost function. Analysing growth and death rates of cancerous cells, it is found that the logarithmic control signal reduces the growth rate, while the hyperbolic tangent-like control function increases the death rate of tumour growth. The two optimal control signals were calculated by converting the constrained optimisation problem into an unconstrained optimisation problem and by using the real-coded genetic algorithm. Mathematical justifications are implemented to elucidate the existence and uniqueness of the solution for the optimal control problem.

摘要

作者展示了一种基于 Gompertz 模型的最优随机控制算法,以获得理想的癌症治疗效果。两个外部力作为两个时变函数被提出,以操纵 Gompertz 模型的漂移项中的生长和死亡率。这两个输入信号分别代表外部治疗剂的作用,以降低肿瘤生长率和增加肿瘤死亡率。基于 Gompertz 模型同时控制癌细胞的熵和方差。他们引入了一个约束优化问题,其代价函数是癌细胞群体的方差。定义的熵基于受影响细胞的概率密度函数被用作代价函数的约束。通过分析癌细胞的生长和死亡率,发现对数控制信号降低了生长率,而双曲正切样控制函数增加了肿瘤生长的死亡率。通过将约束优化问题转化为无约束优化问题,并使用实数编码遗传算法,计算出了两个最优控制信号。实施了数学证明,以阐明最优控制问题解的存在性和唯一性。

相似文献

3
Stochastic Gompertz model of tumour cell growth.肿瘤细胞生长的随机冈珀茨模型。
J Theor Biol. 2007 Sep 21;248(2):317-21. doi: 10.1016/j.jtbi.2007.04.024. Epub 2007 May 5.
6
Invariance principle and model reduction for the Fokker-Planck equation.福克-普朗克方程的不变性原理与模型约简
Philos Trans A Math Phys Eng Sci. 2016 Nov 13;374(2080). doi: 10.1098/rsta.2016.0142.
8

本文引用的文献

1
Control of tumor growth distributions through kinetic methods.通过动力学方法控制肿瘤生长分布。
J Theor Biol. 2021 Apr 7;514:110579. doi: 10.1016/j.jtbi.2021.110579. Epub 2021 Jan 13.
5
7
Stochastic model for tumor growth with immunization.带有免疫作用的肿瘤生长随机模型。
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 May;79(5 Pt 1):051903. doi: 10.1103/PhysRevE.79.051903. Epub 2009 May 11.
8
A stochastic model in tumor growth.肿瘤生长的随机模型。
J Theor Biol. 2006 Sep 21;242(2):329-36. doi: 10.1016/j.jtbi.2006.03.001. Epub 2006 Apr 19.
10
Hyperbolastic growth models: theory and application.双曲线增长模型:理论与应用
Theor Biol Med Model. 2005 Mar 30;2:14. doi: 10.1186/1742-4682-2-14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验