Department of Psychology, University of South Carolina, Barnwell 462, 1512 Pendleton St., Columbia, SC, 29208, USA.
University of Virginia, Charlottesville, VA, USA.
Prev Sci. 2021 Apr;22(3):334-344. doi: 10.1007/s11121-020-01200-9. Epub 2021 Jan 5.
Mentoring programs are a popular approach to preventing problem behavior and promoting positive youth development. However, mentoring relationships that end prematurely may have negative consequences for youth. Previous research has investigated match-level indicators of premature match closure, highlighting possible individual mentor- or mentee-level characteristics that might influence the match staying together. However, less work has investigated the importance of program-level variables in match retention. Mentor training and support may be one key modifiable program-level feature that could curtail the risk of premature match closure. In this study, we used data from a national survey of youth mentoring programs (N = 1451) to examine training and other potential predictors of premature match closures (Garringer et al. 2017). We used a Bayesian Additive Regression Trees (BART) model to predict program-reported premature match closure rates from a set of four training-related variables and 26 other covariates (e.g., program size, budget, demographic composition). Findings indicate that the set of predictors explained about one-fifth of the variation in reported rate of premature match closure (cumulative pseudo R = .21), and the strongest, and only statistically significant, predictor of premature match closure was the frequency of ongoing training and support contacts per month. Overall, findings indicate that there is substantial noise in predicting program-reported premature match closure, but program-reported provision of ongoing training and support seems to emerge as a relatively stable signal in the noise.
辅导计划是预防问题行为和促进青少年积极发展的一种流行方法。然而,过早结束的辅导关系可能会对青少年产生负面影响。先前的研究已经调查了提前结束匹配的匹配级别指标,强调了可能影响匹配关系的个别导师或学员级别的特征。然而,在匹配保留方面,较少的工作调查了计划级别变量的重要性。导师培训和支持可能是一个关键的可修改的计划级别特征,可以减少提前结束匹配的风险。在这项研究中,我们使用了一项全国性青年辅导计划调查的数据(N=1451),来检验培训和其他潜在的提前结束匹配的预测因素(Garringer 等人,2017 年)。我们使用贝叶斯加法回归树(BART)模型,从四组与培训相关的变量和 26 个其他协变量中预测计划报告的提前结束匹配率(例如,计划规模、预算、人口构成)。结果表明,预测变量组解释了报告的提前结束匹配率变化的五分之一左右(累积伪 R=0.21),提前结束匹配的最强且唯一具有统计学意义的预测因素是每月持续培训和支持接触的频率。总的来说,研究结果表明,预测计划报告的提前结束匹配存在很大的噪音,但计划报告提供持续的培训和支持似乎是噪音中的一个相对稳定的信号。