Suppr超能文献

具有持久防雾性能的超亲水铁掺杂二氧化钛薄膜。

Superhydrophilic Fe Doped TiO Films with Long-Lasting Antifogging Performance.

作者信息

Yang Yi, Sun Tianyu, Ma Fuliang, Huang Liang-Feng, Zeng Zhixiang

机构信息

Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.

Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2021 Jan 20;13(2):3377-3386. doi: 10.1021/acsami.0c18444. Epub 2021 Jan 5.

Abstract

Based on the superhydrophilicity of titanium dioxide (TiO) after ultraviolet irradiation, it has a high potential in the application of antifogging. However, a durable superhydrophilic state and a broader photoresponse range are necessary. Considering the enhancement of the photoresponse of TiO, doping is an effective method to prolong the superhydrophilic state. In this paper, a Fe doped TiO film with long-lasting superhydrophilicity and antifogging is prepared by sol-gel method. The experiment and density-functional theory (DFT) calculations are performed to investigate the antifogging performance and the underlying microscopic mechanism of Fe doped TiO. Antifogging tests demonstrate that 1.0 mol % Fe doping leads to durable antifogging performance which lasts 60 days. The DFT calculations reveal that the Fe doping can both increase the photolysis ability of TiO under sunlight exposure and enhance the stability of the hydroxyl adsorbate on TiO surface, which are the main reasons for a long-lasting superhydrophilicity of TiO after sunlight exposure.

摘要

基于二氧化钛(TiO₂)在紫外线照射后具有的超亲水性,其在防雾应用方面具有很高的潜力。然而,需要持久的超亲水状态和更宽的光响应范围。考虑到增强TiO₂的光响应,掺杂是延长超亲水状态的有效方法。本文采用溶胶-凝胶法制备了具有持久超亲水性和防雾性能的铁掺杂TiO₂薄膜。通过实验和密度泛函理论(DFT)计算来研究铁掺杂TiO₂的防雾性能及其潜在的微观机制。防雾测试表明,1.0 mol%的铁掺杂导致了持续60天的持久防雾性能。DFT计算表明,铁掺杂既能提高TiO₂在阳光照射下的光解能力,又能增强TiO₂表面羟基吸附物的稳定性,这是TiO₂在阳光照射后具有持久超亲水性的主要原因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验