Suppr超能文献

免疫临床评分模型用于评估慢性乙型肝炎患者的 T 细胞免疫功能并预测早期抗病毒治疗效果。

An Immuno-Clinic score model for evaluating T cell immunity and predicting early antiviral therapy effectiveness in chronic hepatitis B.

机构信息

Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.

Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.

出版信息

Aging (Albany NY). 2020 Dec 26;12(24):26063-26079. doi: 10.18632/aging.202274.

Abstract

We generated an Immuno-Clinic score (ICS) model to evaluate T cell immunity based on the clustering of antiviral cytokines and inhibitory molecules in 229 naïve chronic hepatitis B (CHB) patients. 126 patients receiving antiviral therapy were used to validate the model for predicting antiviral therapy effectiveness. Through receiver-operator characteristic curve analysis, the area under the curve, sensitivity, and specificity of the ICS model were 0.801 (95%CI 0.703-0.900), 0.727, and 0.722, respectively. The cut-off value was 0.442. Re-evaluation of T cell immunity in different phases of CHB showed that patients in the immune tolerant phase had the lowest percentage of ICS-high (15%), while patients in the inactive carrier phase had the highest percentage of ICS-high (92%). Patients in the immune active and gray zone phases had 17% and 56% ICS-high, respectively. Elevation of ICS as early as four weeks after treatment could predict the effectiveness of hepatitis B virus (HBV) DNA loss and normalization of alanine aminotransferase, while eight weeks after treatment could predict HBV surface antigen decline. Thus, this ICS model helps clinicians choose an optimal time for initiating antiviral therapy and predicting its efficacy.

摘要

我们生成了一种免疫临床评分(ICS)模型,通过对 229 名未经治疗的慢性乙型肝炎(CHB)患者的抗病毒细胞因子和抑制性分子聚类,评估 T 细胞免疫。我们使用 126 名接受抗病毒治疗的患者对模型进行验证,以预测抗病毒治疗的效果。通过接受者操作特征曲线分析,ICS 模型的曲线下面积、灵敏度和特异性分别为 0.801(95%CI 0.703-0.900)、0.727 和 0.722。最佳截断值为 0.442。在 CHB 的不同阶段重新评估 T 细胞免疫,结果表明免疫耐受期患者的 ICS-高比例最低(15%),而非活动携带者期患者的 ICS-高比例最高(92%)。免疫活跃期和灰色区域期患者的 ICS-高比例分别为 17%和 56%。治疗后 4 周即可升高 ICS 水平,有助于预测乙型肝炎病毒(HBV)DNA 丢失和丙氨酸氨基转移酶正常化的效果,而治疗后 8 周则有助于预测 HBV 表面抗原下降。因此,这种 ICS 模型有助于临床医生选择最佳的抗病毒治疗时机,并预测其疗效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da49/7803537/6078a518c7f7/aging-12-202274-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验