Liang Dongmei, Jing Tao, Deng Mingsen, Cai Shaohong
College of Science, Kaili University, Kaili 556011, People's Republic of China.
Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Applied Physics Institute, Guizhou Education University, Guiyang 550018, People's Republic of China.
Nanotechnology. 2021 Apr 9;32(15):155201. doi: 10.1088/1361-6528/abd8af.
Two-dimensional (2D) semiconductors with desirable bandgaps and high carrier mobility have great potential in electronic and optoelectronic applications. In the present work, 2D M-ScN, H-ScN, and O-ScN are predicted by the swarm-intelligent global structure search method. The low formation energies and high dynamical and thermal stabilities indicate the high feasibility of experimental synthesis of these ScN monolayers. The electronic structure calculations reveal that M-ScN and O-ScN are both direct bandgap semiconductors with the bandgaps of 1.39 and 2.14 eV, respectively, while H-ScN has a large indirect bandgap of 3.21 eV. In addition, both M-ScN and H-ScN exhibit ultra-high electron mobilities (3.09 × 10 cm V s and 1.22 × 10 cm V s, respectively). More notably, O-ScN is found to be a promising 2D auxetic and ferroelastic material. The values of negative Possion's ratios and reversible strain of this monolayer are predicted to be -0.27% and 15%, respectively.
具有理想带隙和高载流子迁移率的二维(2D)半导体在电子和光电子应用中具有巨大潜力。在本工作中,通过群体智能全局结构搜索方法预测了二维M-ScN、H-ScN和O-ScN。低形成能以及高动力学和热稳定性表明这些ScN单层在实验合成上具有很高的可行性。电子结构计算表明,M-ScN和O-ScN均为直接带隙半导体,带隙分别为1.39 eV和2.14 eV,而H-ScN具有3.21 eV的大间接带隙。此外,M-ScN和H-ScN均表现出超高的电子迁移率(分别为3.09×10 cm²V⁻¹s⁻¹和1.22×10 cm²V⁻¹s⁻¹)。更值得注意的是,O-ScN被发现是一种有前途的二维负泊松比和铁弹性材料。该单层的负泊松比和可逆应变值预计分别为-0.27%和15%。