Xi Shangbin, Su Yu
Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China.
Materials (Basel). 2021 Jan 2;14(1):183. doi: 10.3390/ma14010183.
For the purpose of investigating the microstructural evolution and the mechanical response under applied loads, a new phase field model based on the Ginzburg-Landau theory is developed by designing a free energy function with six potential wells that represent six martensite variants. Two-dimensional phase field simulations show that, in the process of a shape memory effect induced by temperature-stress, the reduction-disappearance of cubic austenite phase and nucleation-growth of monoclinic martensite multi-variants result in a poly-twined martensitic microstructure. The microstructure of martensitic de-twinning consists of different martensite multi-variants in the tension and compression, which reveals the microstructural asymmetry of nickel-titanium (NiTi) alloy in the tension and compression. Furthermore, in the process of super-elasticity induced by tensile or compressive stress, all martensite variants nucleate and expand as the applied stress gradually increases from zero. Whereas, when the applied stress reaches critical stress, only the martensite variants of applied stress-accommodating continue to expand and others fade gradually. Moreover, the twinned martensite microstructures formed in the tension and compression contain different martensite multi-variants. The study of the microstructural dynamic evolution in the phase transformation can provide a significant reference in improving properties of shape memory alloys that researchers have been exploring in recent years.
为了研究微观结构演变以及在外加载荷下的力学响应,基于金兹堡 - 朗道理论开发了一种新的相场模型,通过设计一个具有六个势阱的自由能函数来代表六个马氏体变体。二维相场模拟表明,在温度 - 应力诱发的形状记忆效应过程中,立方奥氏体相的减少 - 消失以及单斜马氏体多变体的形核 - 生长导致了多孪晶马氏体微观结构。马氏体去孪晶的微观结构在拉伸和压缩时由不同的马氏体多变体组成,这揭示了镍钛(NiTi)合金在拉伸和压缩时的微观结构不对称性。此外,在拉伸或压缩应力诱发的超弹性过程中,随着外加应力从零逐渐增加,所有马氏体变体都会形核并扩展。然而,当外加应力达到临界应力时,只有适应外加应力的马氏体变体继续扩展,其他变体逐渐消失。而且,在拉伸和压缩中形成的孪晶马氏体微观结构包含不同的马氏体多变体。对相变过程中微观结构动态演变的研究可为近年来研究人员一直在探索的改善形状记忆合金性能提供重要参考。