Suppr超能文献

关于进一步理解意大利面条式弯曲断裂过程中的二次断裂

Towards Further Understanding the Secondary Fracture during Spaghetti Bent Break.

作者信息

Long Long, Zheng Yuxuan, Zhou Fenghua, Ren Huilan

机构信息

State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China.

MOE Key Laboratory of Impact and Safety Engineering, Ningbo University, Ningbo 315211, China.

出版信息

Materials (Basel). 2021 Jan 2;14(1):189. doi: 10.3390/ma14010189.

Abstract

When a brittle thin rod, such as a dry spaghetti stick, is bent beyond its flexural limit, it often breaks into more than two pieces, typically three or more. This phenomenon and puzzle has aroused widespread interest and discussion since its first proposal by Feynman. Previous work has partly explained the inevitability of the secondary fracture, but without any adjustable time parameter. In order to further understand this problem, especially the secondary fracture, in this paper we propose and study the dynamics of a half-infinite model to mimic the physics that a spaghetti stick is half-infinite under uniform bending. When the breaking process starts, a gradual release of initial moment of a linearly declining time at the free end, instead of a sudden release, is adopted, resulting in the introduction of a characteristic time parameter to the model and agrees better with the real situation. A specific analytical solution in terms of the excited bending moment using Euler-Bernoulli beam theory is derived, and that the gradual release of initial moment induces a burst of flexural waves, and these flexural waves locally increase the moment in the stick and progressively get to the maximum value, and then lead to the secondary fracture are concluded. The excited moment increases with time and distance, and has an asymptotic extremum value of 1.43 times initial moment. The gradual release in our model requires and gives certain distance and time when the excited bending moment reaches its extremum value, which provides a possibility to predict the detailed fracture parameters such as fragmentation length and time and thus to further understand the secondary fracture during spaghetti bent break.

摘要

当一根脆性细杆,如干意大利面条棒,弯曲超过其弯曲极限时,它通常会断成两段以上,通常是三段或更多段。自费曼首次提出以来,这一现象和谜题引起了广泛的关注和讨论。先前的工作部分解释了二次断裂的必然性,但没有任何可调整的时间参数。为了进一步理解这个问题,特别是二次断裂,在本文中,我们提出并研究了一个半无限模型的动力学,以模拟意大利面条棒在均匀弯曲下为半无限的物理情况。当断裂过程开始时,采用在自由端以线性下降时间逐渐释放初始力矩,而不是突然释放,从而在模型中引入了一个特征时间参数,并且与实际情况更吻合。利用欧拉 - 伯努利梁理论推导了关于激励弯矩的具体解析解,并得出初始力矩的逐渐释放会引发弯曲波的爆发,这些弯曲波会使杆中的力矩局部增加并逐渐达到最大值,进而导致二次断裂的结论。激励力矩随时间和距离增加,并且具有初始力矩1.43倍的渐近极值。我们模型中的逐渐释放需要并给出了激励弯矩达到其极值时的一定距离和时间,这为预测诸如破碎长度和时间等详细断裂参数提供了可能性,从而进一步理解意大利面条弯曲断裂过程中的二次断裂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ab/7795964/e5534832d695/materials-14-00189-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验