Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, Jiangxi, China.
Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, Nanchang, 330006, Jiangxi, China.
BMC Cancer. 2021 Jan 5;21(1):6. doi: 10.1186/s12885-020-07692-6.
Hepatocellular carcinoma (HCC) remains the most frequent liver cancer, accounting for approximately 90% of primary liver cancers worldwide. The recurrence-free survival (RFS) of HCC patients is a critical factor in devising a personal treatment plan. Thus, it is necessary to accurately forecast the prognosis of HCC patients in clinical practice.
Using The Cancer Genome Atlas (TCGA) dataset, we identified genes associated with RFS. A robust likelihood-based survival modeling approach was used to select the best genes for the prognostic model. Then, the GSE76427 dataset was used to evaluate the prognostic model's effectiveness.
We identified 1331 differentially expressed genes associated with RFS. Seven of these genes were selected to generate the prognostic model. The validation in both the TCGA cohort and GEO cohort demonstrated that the 7-gene prognostic model can predict the RFS of HCC patients. Meanwhile, the results of the multivariate Cox regression analysis showed that the 7-gene risk score model could function as an independent prognostic factor. In addition, according to the time-dependent ROC curve, the 7-gene risk score model performed better in predicting the RFS of the training set and the external validation dataset than the classical TNM staging and BCLC. Furthermore, these seven genes were found to be related to the occurrence and development of liver cancer by exploring three other databases.
Our study identified a seven-gene signature for HCC RFS prediction that can be used as a novel and convenient prognostic tool. These seven genes might be potential target genes for metabolic therapy and the treatment of HCC.
肝细胞癌(HCC)仍然是最常见的肝癌,约占全球原发性肝癌的 90%。HCC 患者的无复发生存率(RFS)是制定个体化治疗方案的关键因素。因此,在临床实践中准确预测 HCC 患者的预后是必要的。
我们使用癌症基因组图谱(TCGA)数据集鉴定与 RFS 相关的基因。使用稳健的基于似然的生存建模方法选择最佳基因用于预后模型。然后,使用 GSE76427 数据集评估预后模型的有效性。
我们鉴定出与 RFS 相关的 1331 个差异表达基因。其中 7 个基因被选择用于生成预后模型。在 TCGA 队列和 GEO 队列中的验证表明,7 基因预后模型可以预测 HCC 患者的 RFS。同时,多变量 Cox 回归分析的结果表明,7 基因风险评分模型可以作为独立的预后因素。此外,根据时间依赖性 ROC 曲线,7 基因风险评分模型在预测训练集和外部验证数据集的 RFS 方面优于经典的 TNM 分期和 BCLC。此外,通过探索另外三个数据库,发现这七个基因与肝癌的发生和发展有关。
我们的研究确定了一个用于 HCC RFS 预测的七个基因特征,可以作为一种新的、方便的预后工具。这七个基因可能是代谢治疗和 HCC 治疗的潜在靶标基因。