Department of Biology, University of Texas Arlington, Arlington, Texas, USA.
Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
mBio. 2021 Jan 5;12(1):e02185-20. doi: 10.1128/mBio.02185-20.
Despite dogma suggesting that lipopolysaccharide/lipooligosaccharide (LOS) was essential for viability of Gram-negative bacteria, several clinical isolates produced LOS colonies after colistin selection. Inactivation of the conserved class A penicillin-binding protein, PBP1A, was a compensatory mutation that supported isolation of LOS, but the impact of PBP1A mutation was not characterized. Here, we show that the absence of PBP1A causes septation defects and that these, together with ld-transpeptidase activity, support isolation of LOS PBP1A contributes to proper cell division in , and its absence induced cell chaining. Only isolates producing three or more septa supported selection of colistin-resistant LOS PBP1A was enriched at the midcell, where the divisome complex facilitates daughter cell formation, and its localization was dependent on glycosyltransferase activity. Transposon mutagenesis showed that genes encoding two putative ld-transpeptidases (LdtJ and LdtK) became essential in the PBP1A mutant. Both LdtJ and LdtK were required for selection of LOS, but each had distinct enzymatic activities in the cell. Together, these findings demonstrate that defects in PBP1A glycosyltransferase activity and ld-transpeptidase activity remodel the cell envelope to support selection of colistin-resistant LOS The increasing prevalence of antibiotic treatment failure associated with Gram-negative bacterial infections highlights an urgent need to develop new alternative therapeutic strategies. The last-line antimicrobial colistin (polymyxin E) targets the ubiquitous outer membrane lipopolysaccharide (LPS)/LOS membrane anchor, lipid A, which is essential for viability of most diderms. However, several LOS clinical isolates were recovered after colistin selection, suggesting a conserved resistance mechanism. Here, we characterized a role for penicillin-binding protein 1A in septation and intrinsic β-lactam susceptibility. We also showed that defects in PBP1A glycosyltransferase activity and ld-transpeptidase activity support isolation of colistin-resistant LOS.
尽管有学说认为脂多糖/脂寡糖(LOS)对于革兰氏阴性菌的生存至关重要,但在多粘菌素选择后,一些临床分离株仍能产生 LOS 菌落。保守的 A 类青霉素结合蛋白(PBP1A)失活是一种代偿性突变,支持 LOS 的分离,但 PBP1A 突变的影响尚未得到表征。在这里,我们表明 PBP1A 的缺失会导致隔膜缺陷,这些缺陷与 ld-转肽酶活性一起,支持 LOS 的分离。PBP1A 有助于 的正常细胞分裂,其缺失会诱导细胞链状化。只有产生三个或更多隔膜的分离株才能支持多粘菌素耐药 LOS 的选择。PBP1A 富集在中隔,在那里,分裂体复合物有助于子细胞的形成,其定位依赖于糖基转移酶活性。转座子诱变表明,编码两个假定的 ld-转肽酶(LdtJ 和 LdtK)的基因在 PBP1A 突变体中变得必不可少。LdtJ 和 LdtK 都对 LOS 的选择是必需的,但它们在细胞中具有不同的酶活性。总之,这些发现表明 PBP1A 糖基转移酶活性和 ld-转肽酶活性的缺陷重塑了细胞包膜,以支持多粘菌素耐药 LOS 的选择。革兰氏阴性菌感染相关抗生素治疗失败的日益普遍凸显了迫切需要开发新的替代治疗策略。最后一线抗生素多粘菌素(多粘菌素 E)靶向普遍存在的外膜脂多糖(LPS)/LOS 膜锚定物脂质 A,这对于大多数双菌的生存至关重要。然而,在多粘菌素选择后,分离出了几个 LOS 临床分离株,这表明存在一种保守的耐药机制。在这里,我们研究了青霉素结合蛋白 1A 在 隔膜和固有β-内酰胺敏感性中的作用。我们还表明,PBP1A 糖基转移酶活性和 ld-转肽酶活性的缺陷支持多粘菌素耐药 LOS 的分离。