Department of Molecular Biology, Umeå University, Umeå, Sweden.
Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain.
Nat Commun. 2024 Sep 11;15(1):7937. doi: 10.1038/s41467-024-52325-2.
To withstand their internal turgor pressure and external threats, most bacteria have a protective peptidoglycan (PG) cell wall. The growth of this PG polymer relies on autolysins, enzymes that create space within the structure. Despite extensive research, the regulatory mechanisms governing these PG-degrading enzymes remain poorly understood. Here, we unveil a novel and widespread control mechanism of lytic transglycosylases (LTs), a type of autolysin responsible for breaking down PG glycan chains. Specifically, we show that LD-crosslinks within the PG sacculus act as an inhibitor of LT activity. Moreover, we demonstrate that this regulation controls the release of immunogenic PG fragments and provides resistance against predatory LTs of both bacterial and viral origin. Our findings address a critical gap in understanding the physiological role of the LD-crosslinking mode in PG homeostasis, highlighting how bacteria can enhance their resilience against environmental threats, including phage attacks, through a single structural PG modification.
为了承受内部膨压和外部威胁,大多数细菌都有一层保护性的肽聚糖(PG)细胞壁。这种 PG 聚合物的生长依赖于自溶酶,即能够在结构内创造空间的酶。尽管进行了广泛的研究,但调控这些 PG 降解酶的机制仍知之甚少。在这里,我们揭示了一种新型且广泛存在的溶菌酶(LT)的调控机制,LT 是一种负责分解 PG 聚糖链的自溶酶。具体来说,我们发现 PG 囊中 LD 交联作为 LT 活性的抑制剂。此外,我们证明这种调控控制着免疫原性 PG 片段的释放,并为细菌和病毒来源的捕食性 LT 提供了抗性。我们的发现解决了理解 PG 动态平衡中 LD 交联模式的生理作用的关键空白,强调了细菌如何通过单一的 PG 结构修饰来增强其对环境威胁(包括噬菌体攻击)的弹性。