Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada.
Toronto Health Economics and Technology Assessment (THETA) collaborative, University Health Network, Toronto, Canada.
Colomb Med (Cali). 2020 Sep 30;51(3):e204534. doi: 10.25100/cm.v51i3.4534.
Valle del Cauca is the region with the fourth-highest number of COVID-19 cases in Colombia (>50,000 on September 7, 2020). Due to the lack of anti-COVID-19 therapies, decision-makers require timely and accurate data to estimate the incidence of disease and the availability of hospital resources to contain the pandemic.
We adapted an existing model to the local context to forecast COVID-19 incidence and hospital resource use assuming different scenarios: (1) the implementation of quarantine from September 1 to October 15 (average daily growth rate of 2%); (2-3) partial restrictions (at 4% and 8% growth rates); and (4) no restrictions, assuming a 10% growth rate. Previous scenarios with predictions from June to August were also presented. We estimated the number of new cases, diagnostic tests required, and the number of available hospital and intensive care unit (ICU) beds (with and without ventilators) for each scenario.
We estimated 67,700 cases by October 15 when assuming the implementation of a quarantine, 80,400 and 101,500 cases when assuming partial restrictions at 4% and 8% infection rates, respectively, and 208,500 with no restrictions. According to different scenarios, the estimated demand for reverse transcription-polymerase chain reaction tests ranged from 202,000 to 1,610,600 between September 1 and October 15. The model predicted depletion of hospital and ICU beds by September 20 if all restrictions were to be lifted and the infection growth rate increased to 10%.
Slowly lifting social distancing restrictions and reopening the economy is not expected to result in full resource depletion by October if the daily growth rate is maintained below 8%. Increasing the number of available beds provides a safeguard against slightly higher infection rates. Predictive models can be iteratively used to obtain nuanced predictions to aid decision-making.
瓦尔德尔瓦莱是哥伦比亚 COVID-19 病例第四多的地区(2020 年 9 月 7 日超过 50,000 例)。由于缺乏抗 COVID-19 疗法,决策者需要及时、准确的数据来估计疾病的发病率和医院资源的可用性,以控制疫情。
我们根据当地情况对现有模型进行了调整,以预测 COVID-19 的发病率和医院资源的使用情况,假设了以下不同的情景:(1)从 9 月 1 日至 10 月 15 日实施隔离(平均日增长率为 2%);(2-3)部分限制(增长率为 4%和 8%);(4)不限制,假设增长率为 10%。还展示了之前从 6 月到 8 月的预测情景。我们估算了每个情景下的新发病例数、所需的诊断检测数量以及可用的医院和重症监护病房(带或不带呼吸机)的床位数量。
我们估计,如果实施隔离,到 10 月 15 日将有 67,700 例病例,如果假设感染率分别为 4%和 8%时实施部分限制,将分别有 80,400 和 101,500 例病例,如果不限制,则将有 208,500 例病例。根据不同的情景,9 月 1 日至 10 月 15 日之间,预计逆转录聚合酶链反应测试的需求量将在 202,000 至 1,610,600 之间。如果所有限制都被取消,感染增长率增加到 10%,则模型预测到 9 月 20 日医院和重症监护病房的床位将耗尽。
如果日增长率保持在 8%以下,逐步放宽社会隔离限制和重新开放经济预计不会导致 10 月前资源完全耗尽。增加可用床位数量为应对稍高的感染率提供了保障。预测模型可以迭代使用,以获得更细致的预测,从而辅助决策。