Andrews Bartholomew, Conduit Gareth
TCM Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK.
Department of Physics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
Proc Math Phys Eng Sci. 2020 Dec;476(2244):20200518. doi: 10.1098/rspa.2020.0518. Epub 2020 Dec 23.
The quasi-harmonic model proposes that a crystal can be modelled as atoms connected by springs. We demonstrate how this viewpoint can be misleading: a simple application of Gauss's law shows that the ion-ion potential for a cubic Coulomb system can have no diagonal harmonic contribution and so cannot necessarily be modelled by springs. We investigate the repercussions of this observation by examining three illustrative regimes: the bare ionic, density tight-binding and density nearly-free electron models. For the bare ionic model, we demonstrate the zero elements in the force constants matrix and explain this phenomenon as a natural consequence of Poisson's law. In the density tight-binding model, we confirm that the inclusion of localized electrons stabilizes all major crystal structures at harmonic order and we construct a phase diagram of preferred structures with respect to core and valence electron radii. In the density nearly-free electron model, we verify that the inclusion of delocalized electrons, in the form of a background jellium, is enough to counterbalance the diagonal force constants matrix from the ion-ion potential in all cases and we show that a first-order perturbation to the jellium does not have a destabilizing effect. We discuss our results in connection to Wigner crystals in condensed matter, Yukawa crystals in plasma physics, as well as the elemental solids.
准谐模型提出,可以将晶体建模为由弹簧连接的原子。我们证明了这种观点可能会产生误导:高斯定律的一个简单应用表明,立方库仑系统的离子-离子势不可能有对角谐波贡献,因此不一定能用弹簧来建模。我们通过研究三个示例体系来探讨这一观察结果的影响:裸离子模型、密度紧束缚模型和密度近自由电子模型。对于裸离子模型,我们证明了力常数矩阵中的零元素,并将此现象解释为泊松定律的自然结果。在密度紧束缚模型中,我们证实了包含局域电子会在谐波阶次上稳定所有主要晶体结构,并且我们构建了关于核心和价电子半径的优选结构相图。在密度近自由电子模型中,我们验证了以背景电子气形式包含离域电子足以在所有情况下抵消离子-离子势的对角力常数矩阵,并且我们表明对电子气的一阶微扰不会产生不稳定效应。我们结合凝聚态物质中的维格纳晶体、等离子体物理中的汤川晶体以及元素固体来讨论我们的结果。