Escobar Azor Miguel, Alrakik Amer, de Bentzmann Louan, Telleria-Allika Xabier, Sánchez de Merás Alfredo, Evangelisti Stefano, Berger J Arjan
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom.
European Theoretical Spectroscopy Facility (ETSF), https://www.etsf.eu/.
J Phys Chem Lett. 2024 Apr 4;15(13):3571-3575. doi: 10.1021/acs.jpclett.4c00453. Epub 2024 Mar 25.
At very low density, the electrons in a uniform electron gas spontaneously break symmetry and form a crystalline lattice called a Wigner crystal. But which type of crystal will the electrons form? We report a numerical study of the density profiles of fragments of Wigner crystals from first principles. To simulate Wigner fragments, we use Clifford periodic boundary conditions and a renormalized distance in the Coulomb potential. Moreover, we show that high-spin restricted open-shell Hartree-Fock theory becomes exact in the low-density limit. We are thus able to accurately capture the localization in two-dimensional Wigner fragments with many electrons. No assumptions about the positions where the electrons will localize are made. The density profiles we obtain emerge naturally when we minimize the total energy of the system. We clearly observe the emergence of the hexagonal crystal structure, which has been predicted to be the ground-state structure of the two-dimensional Wigner crystal.
在极低密度下,均匀电子气中的电子会自发地打破对称性,形成一种称为维格纳晶体的晶格。但是电子会形成哪种类型的晶体呢?我们从第一性原理出发,对维格纳晶体碎片的密度分布进行了数值研究。为了模拟维格纳碎片,我们使用了克利福德周期性边界条件和库仑势中的重整化距离。此外,我们表明,高自旋受限开壳哈特里-福克理论在低密度极限下变得精确。因此,我们能够准确地捕捉到具有多个电子的二维维格纳碎片中的局域化现象。我们没有对电子将局域化的位置做出任何假设。当我们使系统的总能量最小化时,我们得到的密度分布自然出现。我们清楚地观察到六边形晶体结构的出现,它被预测为二维维格纳晶体的基态结构。