School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
Faraday Discuss. 2021 Apr 1;227:233-244. doi: 10.1039/c9fd00118b. Epub 2021 Jan 6.
Controlling the assembly of molybdenum disulfide (MoS) layers into static and dynamic superstructures can impact on their use in optoelectronics, energy, and drug delivery. Toward this goal, we present a strategy to drive the assembly of MoS layers via the hybridization of complementary DNA linkers. By functionalizing the MoS surface with thiolated DNA, MoS nanosheets were assembled into mulitlayered superstructures, and the complementary DNA strands were used as linkers. A disassembly process was triggered by the formation of an intramolecular i-motif structure at a cystosine-rich sequence in the DNA linker at acidic pH values. We tested the versatility of our approach by driving the disassembly of the MoS superstructures through a different DNA-based mechanism, namely strand displacement. This study demonstrates how DNA can be employed to drive the static and dynamic assembly of MoS nanosheets in aqueous solution.
控制二硫化钼(MoS)层组装成静态和动态超结构可以影响它们在光电子学、能源和药物输送中的应用。为此,我们提出了一种通过互补 DNA 接头的杂交来驱动 MoS 层组装的策略。通过用硫醇化 DNA 功能化 MoS 表面,MoS 纳米片被组装成多层超结构,互补的 DNA 链被用作接头。在酸性 pH 值下,DNA 接头中富含半胱氨酸的序列形成分子内 i 型结构,触发了组装的解组装过程。我们通过不同的基于 DNA 的机制,即链置换,来驱动 MoS 超结构的解组装,从而测试了我们方法的多功能性。本研究展示了如何在水溶液中使用 DNA 驱动 MoS 纳米片的静态和动态组装。