Suppr超能文献

基于 CRISPR-Cas12a 和杂交链式反应的可编程凝胶电泳检测分析方法

Reprogrammable Gel Electrophoresis Detection Assay Using CRISPR-Cas12a and Hybridization Chain Reaction.

机构信息

Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States.

The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States.

出版信息

Anal Chem. 2021 Feb 2;93(4):1934-1938. doi: 10.1021/acs.analchem.0c04949. Epub 2021 Jan 6.

Abstract

Hybridization chain reaction (HCR) is a DNA-based target-induced cascade reaction. Due to its unique enzyme-free amplification feature, HCR is often employed for sensing applications. Much like DNA nanostructures that have been designed to respond to a specific stimulus, HCR employs nucleic acids that reconfigure and assemble in the presence of a specific trigger. Despite its standalone capabilities, HCR is highly modular; therefore, it can be advanced and repurposed when coupled with latest discoveries. To this effect, we have developed a gel electrophoresis-based detection approach which combines the signal amplification feature of HCR with the programmability and sensitivity of the CRISPR-Cas12a system. By incorporating CRISPR-Cas12a, we have achieved greater sensitivity and reversed the signal output from TURN OFF to TURN ON. CRISPR-Cas12a also enabled us to rapidly reprogram the assay for the detection of both ssDNA and dsDNA target sequences by replacing a single reaction component in the detection kit. Detection of conserved, both ssDNA and dsDNA, regions of tobacco curly shoot virus (TCSV) and hepatitis B virus (HepBV) genomes is demonstrated with this methodology. This low-cost gel electrophoresis assay can detect as little as 1.5 fmol of the target without any additional target amplification steps and is about 100-fold more sensitive than HCR-alone approach.

摘要

杂交链式反应(HCR)是一种基于 DNA 的靶标诱导级联反应。由于其独特的无酶扩增特性,HCR 常用于传感应用。与针对特定刺激设计的 DNA 纳米结构类似,HCR 使用在特定触发存在下重新配置和组装的核酸。尽管具有独立的功能,但 HCR 具有高度的模块化;因此,当与最新发现结合使用时,可以进行改进和重新利用。为此,我们开发了一种基于凝胶电泳的检测方法,该方法将 HCR 的信号放大特性与 CRISPR-Cas12a 系统的可编程性和敏感性相结合。通过整合 CRISPR-Cas12a,我们实现了更高的灵敏度,并将信号输出从关闭状态反转到打开状态。CRISPR-Cas12a 还使我们能够通过在检测试剂盒中替换单个反应成分,快速重新编程用于检测 ssDNA 和 dsDNA 靶序列的测定。该方法可用于检测烟草卷曲叶病毒(TCSV)和乙型肝炎病毒(HepBV)基因组的保守 ssDNA 和 dsDNA 区域。与单独的 HCR 方法相比,该低成本凝胶电泳检测法无需任何额外的靶标扩增步骤,即可检测到低至 1.5 fmol 的靶标,灵敏度提高了约 100 倍。

相似文献

1
Reprogrammable Gel Electrophoresis Detection Assay Using CRISPR-Cas12a and Hybridization Chain Reaction.
Anal Chem. 2021 Feb 2;93(4):1934-1938. doi: 10.1021/acs.analchem.0c04949. Epub 2021 Jan 6.
3
Enhanced chemiluminescence imaging sensor for ultrasensitive detection of nucleic acids based on HCR-CRISPR/Cas12a.
Biosens Bioelectron. 2022 Sep 15;212:114428. doi: 10.1016/j.bios.2022.114428. Epub 2022 May 27.
8
A Cascade Signal Amplification Based on Dynamic DNA Nanodevices and CRISPR/Cas12a Trans-cleavage for Highly Sensitive MicroRNA Sensing.
ACS Synth Biol. 2021 Jun 18;10(6):1481-1489. doi: 10.1021/acssynbio.1c00064. Epub 2021 May 19.

引用本文的文献

1
Target-Responsive DNA Hydrogels with Encapsulation and Release Properties Using Programmable CRISPR-Cas12a.
ACS Chem Biol. 2025 Jul 18;20(7):1805-1812. doi: 10.1021/acschembio.5c00355. Epub 2025 Jul 9.
4
Mimicking a Cellular Crowding Environment for Enzyme-Free Paper-Based Nucleic Acid Tests at the Point of Care.
ACS Sens. 2024 Oct 25;9(10):5069-5080. doi: 10.1021/acssensors.4c00539. Epub 2024 Sep 30.
6
Detection of Parasites in the Field: The Ever-Innovating CRISPR/Cas12a.
Biosensors (Basel). 2024 Mar 14;14(3):145. doi: 10.3390/bios14030145.
7
Mimicking an environment for enzyme-free paper-based nucleic acid tests at the point of care.
bioRxiv. 2024 Feb 29:2024.02.27.582375. doi: 10.1101/2024.02.27.582375.
8
Ultrasensitive ImmunoMag-CRISPR Lateral Flow Assay for Point-of-Care Testing of Urinary Biomarkers.
ACS Sens. 2024 Jan 26;9(1):92-100. doi: 10.1021/acssensors.3c01694. Epub 2023 Dec 23.
9
Application of Hybridization Chain Reaction/CRISPR-Cas12a for the Detection of SARS-CoV-2 Infection.
Diagnostics (Basel). 2023 May 7;13(9):1644. doi: 10.3390/diagnostics13091644.
10
Advancements in CRISPR-Based Biosensing for Next-Gen Point of Care Diagnostic Application.
Biosensors (Basel). 2023 Jan 29;13(2):202. doi: 10.3390/bios13020202.

本文引用的文献

1
CRISPR-Assisted DNA Detection: A Novel dCas9-Based DNA Detection Technique.
CRISPR J. 2020 Dec;3(6):487-502. doi: 10.1089/crispr.2020.0041.
2
Programmable low-cost DNA-based platform for viral RNA detection.
Sci Adv. 2020 Sep 25;6(39). doi: 10.1126/sciadv.abc6246. Print 2020 Sep.
4
Ribonuclease-Responsive DNA Nanoswitches.
Cell Rep Phys Sci. 2020 Jul 22;1(7). doi: 10.1016/j.xcrp.2020.100117.
5
Dynamic Aqueous Multiphase Reaction System for One-Pot CRISPR-Cas12a-Based Ultrasensitive and Quantitative Molecular Diagnosis.
Anal Chem. 2020 Jun 16;92(12):8561-8568. doi: 10.1021/acs.analchem.0c01459. Epub 2020 May 22.
6
Isothermal Nucleic Acid Amplification Techniques and Their Use in Bioanalysis.
Biochemistry (Mosc). 2020 Feb;85(2):147-166. doi: 10.1134/S0006297920020030.
7
SHERLOCK: nucleic acid detection with CRISPR nucleases.
Nat Protoc. 2019 Oct;14(10):2986-3012. doi: 10.1038/s41596-019-0210-2. Epub 2019 Sep 23.
8
Cas12aVDet: A CRISPR/Cas12a-Based Platform for Rapid and Visual Nucleic Acid Detection.
Anal Chem. 2019 Oct 1;91(19):12156-12161. doi: 10.1021/acs.analchem.9b01526. Epub 2019 Sep 11.
10
Cellular microRNA detection with miRacles: microRNA- activated conditional looping of engineered switches.
Sci Adv. 2019 Mar 13;5(3):eaau9443. doi: 10.1126/sciadv.aau9443. eCollection 2019 Mar.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验