Ishikawa Shohei, Matsukuma Daisuke, Iijima Kazutoshi, Iijima Michihiro, Osawa Shigehito, Otsuka Hidenori
Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 12-1 Ichigayafunagawara-machi, Shinjuku-ku, Tokyo 162-0826, Japan.
Department of Materials Chemistry and Bioengineering, National Institute of Technology, Oyama College, 771 Nakakuki, Oyama, Tochigi 323-0806, Japan.
ACS Biomater Sci Eng. 2019 Nov 11;5(11):5759-5769. doi: 10.1021/acsbiomaterials.9b00218. Epub 2019 Apr 24.
The design of biocompatible, degradable, and injectable hydrogel has been attractive for achievement of safe and efficient tissue engineering. Herein, we designed a -hydroxysuccinimide (NHS) ester-terminated ABA triblock copolymer composed of poly(ethylene glycol) (PEG) as hydrophilic A segments and poly(dl-lactide) (PLA) as B segment having hydrolysis property (NHS-PEG--PLA--PEG-NHS) to be a cross-linker of polymer segments having amine groups for facile construction of injectable and degradable hydrogel. The PLA domain, which is widely accepted hydrolyzable segments, is inherently hydrophobic and simple introduction of the NHS group on the ends of PLA would not have high reactivity in aqueous milieu to construct injectable hydrogel. Thus, in this design, hydrophilic PEG was introduced as A segments to increase the reactivity of NHS groups at the ends of linkers by increasing the mobility. To demonstrate the property as a cross-linker for constructing degradable and injectable hydrogel, carboxylmethyl chitosan (CH), which is a polymer segment having amine groups, and NHS-PEG--PLA--PEG-NHS solutions were mixed to form the hydrogel (CH/PEG-PLA-PEG) under physiological condition. The formation of CH/PEG-PLA-PEG hydrogel proceeded within minute-order period after mixing the solutions, suggesting NHS-PEG--PLA--PEG-NHS is applicable to the cross-linker for construction of injectable hydrogel system with time-dependent gelation property. Degradation of the obtained CH/PEG-PLA-PEG hydrogel was observed, whereas that of CH/PEG, which was prepared from NHS-PEG-NHS and CH, was not observed, appealing the degradation property of the CH/PEG-PLA-PEG hydrogel based on hydrolysis of the PLA domain. Furthermore, chondrocytes embedded in CH/PEG-PLA-PEG hydrogels promoted collagen synthesis compared to CH/PEG. These demonstrations indicate the designed NHS-PEG--PLA--PEG-NHS is a promising cross-linker to construct the injectable and degradable hydrogel and eventually promote hydrogel performance as a tissue regeneration scaffold.
生物相容性、可降解且可注射水凝胶的设计对于实现安全有效的组织工程具有吸引力。在此,我们设计了一种α-羟基琥珀酰亚胺(NHS)酯封端的ABA三嵌段共聚物,其由作为亲水性A链段的聚乙二醇(PEG)和作为具有水解性质的B链段的聚(dl-丙交酯)(PLA)组成(NHS-PEG-PLA-PEG-NHS),作为具有胺基的聚合物链段的交联剂,以便轻松构建可注射和可降解的水凝胶。PLA结构域是广泛认可的可水解链段,本质上具有疏水性,在PLA末端简单引入NHS基团在水性环境中构建可注射水凝胶时不会具有高反应性。因此,在该设计中,引入亲水性PEG作为A链段,通过增加流动性来提高连接体末端NHS基团的反应性。为了证明其作为构建可降解和可注射水凝胶的交联剂的性质,将具有胺基的聚合物链段羧甲基壳聚糖(CH)与NHS-PEG-PLA-PEG-NHS溶液在生理条件下混合以形成水凝胶(CH/PEG-PLA-PEG)。溶液混合后,CH/PEG-PLA-PEG水凝胶在分钟级时间内形成,表明NHS-PEG-PLA-PEG-NHS适用于构建具有时间依赖性凝胶化性质的可注射水凝胶体系。观察到所得CH/PEG-PLA-PEG水凝胶的降解,而由NHS-PEG-NHS和CH制备的CH/PEG则未观察到降解,这表明基于PLA结构域的水解,CH/PEG-PLA-PEG水凝胶具有降解性质。此外,与CH/PEG相比,嵌入CH/PEG-PLA-PEG水凝胶中的软骨细胞促进了胶原蛋白的合成。这些证明表明,设计的NHS-PEG-PLA-PEG-NHS是一种有前途的交联剂,可用于构建可注射和可降解的水凝胶,并最终提升水凝胶作为组织再生支架的性能。